Do you want to publish a course? Click here

textTOvec: Deep Contextualized Neural Autoregressive Topic Models of Language with Distributed Compositional Prior

173   0   0.0 ( 0 )
 Added by Pankaj Gupta
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summarizing a given context as a bag-of-word and consequently the semantics of words in the context is lost. The LSTM-LM learns a vector-space representation of each word by accounting for word order in local collocation patterns and models complex characteristics of language (e.g., syntax and semantics), while the TM simultaneously learns a latent representation from the entire document and discovers the underlying thematic structure. We unite two complementary paradigms of learning the meaning of word occurrences by combining a TM (e.g., DocNADE) and a LM in a unified probabilistic framework, named as ctx-DocNADE. (2) Limited Context and/or Smaller training corpus of documents: In settings with a small number of word occurrences (i.e., lack of context) in short text or data sparsity in a corpus of few documents, the application of TMs is challenging. We address this challenge by incorporating external knowledge into neural autoregressive topic models via a language modelling approach: we use word embeddings as input of a LSTM-LM with the aim to improve the word-topic mapping on a smaller and/or short-text corpus. The proposed DocNADE extension is named as ctx-DocNADEe. We present novel neural autoregressive topic model variants coupled with neural LMs and embeddings priors that consistently outperform state-of-the-art generative TMs in terms of generalization (perplexity), interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.



rate research

Read More

We address two challenges in topic models: (1) Context information around words helps in determining their actual meaning, e.g., networks used in the contexts artificial neural networks vs. biological neuron networks. Generative topic models infer topic-word distributions, taking no or only little context into account. Here, we extend a neural autoregressive topic model to exploit the full context information around words in a document in a language modeling fashion. The proposed model is named as iDocNADE. (2) Due to the small number of word occurrences (i.e., lack of context) in short text and data sparsity in a corpus of few documents, the application of topic models is challenging on such texts. Therefore, we propose a simple and efficient way of incorporating external knowledge into neural autoregressive topic models: we use embeddings as a distributional prior. The proposed variants are named as DocNADEe and iDocNADEe. We present novel neural autoregressive topic model variants that consistently outperform state-of-the-art generative topic models in terms of generalization, interpretability (topic coherence) and applicability (retrieval and classification) over 7 long-text and 8 short-text datasets from diverse domains.
304 - Bin He , Di Zhou , Jinghui Xiao 2019
Complex node interactions are common in knowledge graphs, and these interactions also contain rich knowledge information. However, traditional methods usually treat a triple as a training unit during the knowledge representation learning (KRL) procedure, neglecting contextualized information of the nodes in knowledge graphs (KGs). We generalize the modeling object to a very general form, which theoretically supports any subgraph extracted from the knowledge graph, and these subgraphs are fed into a novel transformer-based model to learn the knowledge embeddings. To broaden usage scenarios of knowledge, pre-trained language models are utilized to build a model that incorporates the learned knowledge representations. Experimental results demonstrate that our model achieves the state-of-the-art performance on several medical NLP tasks, and improvement above TransE indicates that our KRL method captures the graph contextualized information effectively.
Pre-trained language models have been successful on text classification tasks, but are prone to learning spurious correlations from biased datasets, and are thus vulnerable when making inferences in a new domain. Prior works reveal such spurious patterns via post-hoc explanation algorithms which compute the importance of input features. Further, the model is regularized to align the importance scores with human knowledge, so that the unintended model behaviors are eliminated. However, such a regularization technique lacks flexibility and coverage, since only importance scores towards a pre-defined list of features are adjusted, while more complex human knowledge such as feature interaction and pattern generalization can hardly be incorporated. In this work, we propose to refine a learned language model for a target domain by collecting human-provided compositional explanations regarding observed biases. By parsing these explanations into executable logic rules, the human-specified refinement advice from a small set of explanations can be generalized to more training examples. We additionally introduce a regularization term allowing adjustments for both importance and interaction of features to better rectify model behavior. We demonstrate the effectiveness of the proposed approach on two text classification tasks by showing improved performance in target domain as well as improved model fairness after refinement.
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.
Generating schema labels automatically for column values of data tables has many data science applications such as schema matching, and data discovery and linking. For example, automatically extracted tables with missing headers can be filled by the predicted schema labels which significantly minimizes human effort. Furthermore, the predicted labels can reduce the impact of inconsistent names across multiple data tables. Understanding the connection between column values and contextual information is an important yet neglected aspect as previously proposed methods treat each column independently. In this paper, we propose a context-aware semantic labeling method using both the column values and context. Our new method is based on a new setting for semantic labeling, where we sequentially predict labels for an input table with missing headers. We incorporate both the values and context of each data column using the pre-trained contextualized language model, BERT, that has achieved significant improvements in multiple natural language processing tasks. To our knowledge, we are the first to successfully apply BERT to solve the semantic labeling task. We evaluate our approach using two real-world datasets from different domains, and we demonstrate substantial improvements in terms of evaluation metrics over state-of-the-art feature-based methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا