Do you want to publish a course? Click here

Semantic Labeling Using a Deep Contextualized Language Model

393   0   0.0 ( 0 )
 Added by Mohamed Trabelsi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Generating schema labels automatically for column values of data tables has many data science applications such as schema matching, and data discovery and linking. For example, automatically extracted tables with missing headers can be filled by the predicted schema labels which significantly minimizes human effort. Furthermore, the predicted labels can reduce the impact of inconsistent names across multiple data tables. Understanding the connection between column values and contextual information is an important yet neglected aspect as previously proposed methods treat each column independently. In this paper, we propose a context-aware semantic labeling method using both the column values and context. Our new method is based on a new setting for semantic labeling, where we sequentially predict labels for an input table with missing headers. We incorporate both the values and context of each data column using the pre-trained contextualized language model, BERT, that has achieved significant improvements in multiple natural language processing tasks. To our knowledge, we are the first to successfully apply BERT to solve the semantic labeling task. We evaluate our approach using two real-world datasets from different domains, and we demonstrate substantial improvements in terms of evaluation metrics over state-of-the-art feature-based methods.

rate research

Read More

Correctly detecting the semantic type of data columns is crucial for data science tasks such as automated data cleaning, schema matching, and data discovery. Existing data preparation and analysis systems rely on dictionary lookups and regular expression matching to detect semantic types. However, these matching-based approaches often are not robust to dirty data and only detect a limited number of types. We introduce Sherlock, a multi-input deep neural network for detecting semantic types. We train Sherlock on $686,765$ data columns retrieved from the VizNet corpus by matching $78$ semantic types from DBpedia to column headers. We characterize each matched column with $1,588$ features describing the statistical properties, character distributions, word embeddings, and paragraph vectors of column values. Sherlock achieves a support-weighted F$_1$ score of $0.89$, exceeding that of machine learning baselines, dictionary and regular expression benchmarks, and the consensus of crowdsourced annotations.
Pretrained contextualized language models such as BERT have achieved impressive results on various natural language processing benchmarks. Benefiting from multiple pretraining tasks and large scale training corpora, pretrained models can capture complex syntactic word relations. In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval. We investigate how to encode table content considering the table structure and input length limit of BERT. We also propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT. In experiments on public datasets, we show that our best approach can outperform the previous state-of-the-art method and BERT baselines with a large margin under different evaluation metrics.
Many efforts have been made to facilitate natural language processing tasks with pre-trained language models (LMs), and brought significant improvements to various applications. To fully leverage the nearly unlimited corpora and capture linguistic information of multifarious levels, large-size LMs are required; but for a specific task, only parts of these information are useful. Such large-sized LMs, even in the inference stage, may cause heavy computation workloads, making them too time-consuming for large-scale applications. Here we propose to compress bulky LMs while preserving useful information with regard to a specific task. As different layers of the model keep different information, we develop a layer selection method for model pruning using sparsity-inducing regularization. By introducing the dense connectivity, we can detach any layer without affecting others, and stretch shallow and wide LMs to be deep and narrow. In model training, LMs are learned with layer-wise dropouts for better robustness. Experiments on two benchmark datasets demonstrate the effectiveness of our method.
We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summarizing a given context as a bag-of-word and consequently the semantics of words in the context is lost. The LSTM-LM learns a vector-space representation of each word by accounting for word order in local collocation patterns and models complex characteristics of language (e.g., syntax and semantics), while the TM simultaneously learns a latent representation from the entire document and discovers the underlying thematic structure. We unite two complementary paradigms of learning the meaning of word occurrences by combining a TM (e.g., DocNADE) and a LM in a unified probabilistic framework, named as ctx-DocNADE. (2) Limited Context and/or Smaller training corpus of documents: In settings with a small number of word occurrences (i.e., lack of context) in short text or data sparsity in a corpus of few documents, the application of TMs is challenging. We address this challenge by incorporating external knowledge into neural autoregressive topic models via a language modelling approach: we use word embeddings as input of a LSTM-LM with the aim to improve the word-topic mapping on a smaller and/or short-text corpus. The proposed DocNADE extension is named as ctx-DocNADEe. We present novel neural autoregressive topic model variants coupled with neural LMs and embeddings priors that consistently outperform state-of-the-art generative TMs in terms of generalization (perplexity), interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.
We present a simple and accurate span-based model for semantic role labeling (SRL). Our model directly takes into account all possible argument spans and scores them for each label. At decoding time, we greedily select higher scoring labeled spans. One advantage of our model is to allow us to design and use span-level features, that are difficult to use in token-based BIO tagging approaches. Experimental results demonstrate that our ensemble model achieves the state-of-the-art results, 87.4 F1 and 87.0 F1 on the CoNLL-2005 and 2012 datasets, respectively.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا