Do you want to publish a course? Click here

EMI: Exploration with Mutual Information

114   0   0.0 ( 0 )
 Added by Hyoungseok Kim
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Reinforcement learning algorithms struggle when the reward signal is very sparse. In these cases, naive random exploration methods essentially rely on a random walk to stumble onto a rewarding state. Recent works utilize intrinsic motivation to guide the exploration via generative models, predictive forward models, or discriminative modeling of novelty. We propose EMI, which is an exploration method that constructs embedding representation of states and actions that does not rely on generative decoding of the full observation but extracts predictive signals that can be used to guide exploration based on forward prediction in the representation space. Our experiments show competitive results on challenging locomotion tasks with continuous control and on image-based exploration tasks with discrete actions on Atari. The source code is available at https://github.com/snu-mllab/EMI .



rate research

Read More

The richness in the content of various information networks such as social networks and communication networks provides the unprecedented potential for learning high-quality expressive representations without external supervision. This paper investigates how to preserve and extract the abundant information from graph-structured data into embedding space in an unsupervised manner. To this end, we propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations. GMI generalizes the idea of conventional mutual information computations from vector space to the graph domain where measuring mutual information from two aspects of node features and topological structure is indispensable. GMI exhibits several benefits: First, it is invariant to the isomorphic transformation of input graphs---an inevitable constraint in many existing graph representation learning algorithms; Besides, it can be efficiently estimated and maximized by current mutual information estimation methods such as MINE; Finally, our theoretical analysis confirms its correctness and rationality. With the aid of GMI, we develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder. Considerable experiments on transductive as well as inductive node classification and link prediction demonstrate that our method outperforms state-of-the-art unsupervised counterparts, and even sometimes exceeds the performance of supervised ones.
83 - Xinhan Di , Pengqian Yu , Rui Bu 2019
A variety of graph neural networks (GNNs) frameworks for representation learning on graphs have been recently developed. These frameworks rely on aggregation and iteration scheme to learn the representation of nodes. However, information between nodes is inevitably lost in the scheme during learning. In order to reduce the loss, we extend the GNNs frameworks by exploring the aggregation and iteration scheme in the methodology of mutual information. We propose a new approach of enlarging the normal neighborhood in the aggregation of GNNs, which aims at maximizing mutual information. Based on a series of experiments conducted on several benchmark datasets, we show that the proposed approach improves the state-of-the-art performance for four types of graph tasks, including supervised and semi-supervised graph classification, graph link prediction and graph edge generation and classification.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
In this paper we introduce a simple approach for exploration in reinforcement learning (RL) that allows us to develop theoretically justified algorithms in the tabular case but that is also extendable to settings where function approximation is required. Our approach is based on the successor representation (SR), which was originally introduced as a representation defining state generalization by the similarity of successor states. Here we show that the norm of the SR, while it is being learned, can be used as a reward bonus to incentivize exploration. In order to better understand this transient behavior of the norm of the SR we introduce the substochastic successor representation (SSR) and we show that it implicitly counts the number of times each state (or feature) has been observed. We use this result to introduce an algorithm that performs as well as some theoretically sample-efficient approaches. Finally, we extend these ideas to a deep RL algorithm and show that it achieves state-of-the-art performance in Atari 2600 games when in a low sample-complexity regime.
Graph representation learning has attracted increasing research attention. However, most existing studies fuse all structural features and node attributes to provide an overarching view of graphs, neglecting finer substructures semantics, and suffering from interpretation enigmas. This paper presents a novel hierarchical subgraph-level selection and embedding based graph neural network for graph classification, namely SUGAR, to learn more discriminative subgraph representations and respond in an explanatory way. SUGAR reconstructs a sketched graph by extracting striking subgraphs as the representative part of the original graph to reveal subgraph-level patterns. To adaptively select striking subgraphs without prior knowledge, we develop a reinforcement pooling mechanism, which improves the generalization ability of the model. To differentiate subgraph representations among graphs, we present a self-supervised mutual information mechanism to encourage subgraph embedding to be mindful of the global graph structural properties by maximizing their mutual information. Extensive experiments on six typical bioinformatics datasets demonstrate a significant and consistent improvement in model quality with competitive performance and interpretability.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا