Do you want to publish a course? Click here

Exactly Solvable Lattice Models with Crossing Symmetry

158   0   0.0 ( 0 )
 Added by Paul Fendley
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show how to compute the exact partition function for lattice statistical-mechanical models whose Boltzmann weights obey a special crossing symmetry. The crossing symmetry equates partition functions on different trivalent graphs, allowing a transformation to a graph where the partition function is easily computed. The simplest example is counting the number of nets without ends on the honeycomb lattice, including a weight per branching. Other examples include an Ising model on the Kagome lattice with three-spin interactions, dimers on any graph of corner-sharing triangles, and non-crossing loops on the honeycomb lattice, where multiple loops on each edge are allowed. We give several methods for obtaining models with this crossing symmetry, one utilizing discrete groups and another anyon fusion rules. We also present results indicating that for models which deviate slightly from having crossing symmetry, a real-space decimation (renormalization-group-like) procedure restores the crossing symmetry.



rate research

Read More

We introduce a new two-dimensional model with diagonal four spin exchange and an exactly knownground-state. Using variational ansaetze and exact diagonalisation we calculate upper and lower bounds for the critical coupling of the model. Both for this model and for the Shastry-Sutherland model we study periodic systems up to system size 6x6.
A large number of symmetry-protected topological (SPT) phases have been hypothesized for strongly interacting spin-1/2 systems in one dimension. Realizing these SPT phases, however, often demands fine-tunings hard to reach experimentally. And the lack of analytical solutions hinders the understanding of their many-body wave functions. Here we show that two kinds of SPT phases naturally arise for ultracold polar molecules confined in a zigzag optical lattice. This system, motivated by recent experiments, is described by a spin model whose exchange couplings can be tuned by an external field to reach parameter regions not studied before for spin chains or ladders. Within the enlarged parameter space, we find the ground state wave function can be obtained exactly along a line and at a special point, for these two phases respectively. These exact solutions provide a clear physical picture for the SPT phases and their edge excitations. We further obtain the phase diagram by using infinite time-evolving block decimation, and discuss the phase transitions between the two SPT phases and their experimental signatures.
We construct fixed-point wave functions and exactly solvable commuting-projector Hamiltonians for a large class of bosonic symmetry-enriched topological (SET) phases, based on the concept of equivalent classes of symmetric local unitary transformations. We argue that for onsite unitary symmetries, our construction realizes all SETs free of anomaly, as long as the underlying topological order itself can be realized with a commuting-projector Hamiltonian. We further extend the construction to anti-unitary symmetries (e.g. time-reversal symmetry), mirror-reflection symmetries, and to anomalous SETs on the surface of three-dimensional symmetry-protected topological phases. Mathematically, our construction naturally leads to a generalization of group extensions of unitary fusion categories to anti-unitary symmetries.
93 - Hajime Yoshino 2017
We construct and analyze a family of $M$-component vectorial spin systems which exhibit glass transitions and jamming within supercooled paramagnetic states without quenched disorder. Our system is defined on lattices with connectivity $c=alpha M$ and becomes exactly solvable in the limit of large number of components $M to infty$. We consider generic $p$-body interactions between the vectorial Ising/continuous spins with linear/non-linear potentials. The existence of self-generated randomness is demonstrated by showing that the random energy model is recovered from a $M$-component ferromagnetic $p$-spin Ising model in $M to infty$ and $p to infty$ limit. In our systems the quenched disorder, if present, and the self-generated disorder act additively. Our theory provides a unified mean-field theoretical framework for glass transitions of rotational degree of freedoms such as orientation of molecules in glass forming liquids, color angles in continuous coloring of graphs and vector spins of geometrically frustrated magnets. The rotational glass transitions accompany various types of replica symmetry breaking. In the case of repulsive hardcore interactions in the spin space, continuous the criticality of the jamming or SAT/UNSTAT transition becomes the same as that of hardspheres.
139 - Urna Basu , P. K. Mohanty 2009
We introduce and solve a model of hardcore particles on a one dimensional periodic lattice which undergoes an active-absorbing state phase transition at finite density. In this model an occupied site is defined to be active if its left neighbour is occupied and the right neighbour is vacant. Particles from such active sites hop stochastically to their right. We show that, both the density of active sites and the survival probability vanish as the particle density is decreased below half. The critical exponents and spatial correlations of the model are calculated exactly using the matrix product ansatz. Exact analytical study of several variations of the model reveals that these non-equilibrium phase transitions belong to a new universality class different from the generic active-absorbing-state phase transition, namely directed percolation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا