Do you want to publish a course? Click here

Federated AI for building AI Solutions across Multiple Agencies

84   0   0.0 ( 0 )
 Added by Dinesh Verma
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The different sets of regulations existing for differ-ent agencies within the government make the task of creating AI enabled solutions in government dif-ficult. Regulatory restrictions inhibit sharing of da-ta across different agencies, which could be a significant impediment to training AI models. We discuss the challenges that exist in environments where data cannot be freely shared and assess tech-nologies which can be used to work around these challenges. We present results on building AI models using the concept of federated AI, which al-lows creation of models without moving the training data around.



rate research

Read More

In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society. Across academia, industry, and government bodies, a variety of endeavours are being pursued towards enhancing AI ethics. A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests. These different perspectives are often not understood, due in part to communication gaps.For example, AI researchers who design and develop AI models are not necessarily aware of the instability induced in consumers lives by the compounded effects of AI decisions. Educating different stakeholders about their roles and responsibilities in the broader context becomes necessary. In this position paper, we outline some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools for surfacing different perspectives. We hope to spark interdisciplinary discussions about computational creativity broadly as a tool for enhancing AI ethics.
Artificial intelligence shows promise for solving many practical societal problems in areas such as healthcare and transportation. However, the current mechanisms for AI model diffusion such as Github code repositories, academic project webpages, and commercial AI marketplaces have some limitations; for example, a lack of monetization methods, model traceability, and model auditabilty. In this work, we sketch guidelines for a new AI diffusion method based on a decentralized online marketplace. We consider the technical, economic, and regulatory aspects of such a marketplace including a discussion of solutions for problems in these areas. Finally, we include a comparative analysis of several current AI marketplaces that are already available or in development. We find that most of these marketplaces are centralized commercial marketplaces with relatively few models.
85 - Ian Foster , David Parkes , 2020
The use of computational simulation is by now so pervasive in society that it is no exaggeration to say that continued U.S. and international prosperity, security, and health depend in part on continued improvements in simulation capabilities. What if we could predict weather two weeks out, guide the design of new drugs for new viral diseases, or manage new manufacturing processes that cut production costs and times by an order of magnitude? What if we could predict collective human behavior, for example, response to an evacuation request during a natural disaster, or labor response to fiscal stimulus? (See also the companion CCC Quad Paper on Pandemic Informatics, which discusses features that would be essential to solving large-scale problems like preparation for, and response to, the inevitable next pandemic.) The past decade has brought remarkable advances in complementary areas: in sensors, which can now capture enormous amounts of data about the world, and in AI methods capable of learning to extract predictive patterns from those data. These advances may lead to a new era in computational simulation, in which sensors of many kinds are used to produce vast quantities of data, AI methods identify patterns in those data, and new AI-driven simulators combine machine-learned and mathematical rules to make accurate and actionable predictions. At the same time, there are new challenges -- computers in some important regards are no longer getting faster, and in some areas we are reaching the limits of mathematical understanding, or at least of our ability to translate mathematical understanding into efficient simulation. In this paper, we lay out some themes that we envision forming part of a cohesive, multi-disciplinary, and application-inspired research agenda on AI-driven simulators.
Like any technology, AI systems come with inherent risks and potential benefits. It comes with potential disruption of established norms and methods of work, societal impacts and externalities. One may think of the adoption of technology as a form of social contract, which may evolve or fluctuate in time, scale, and impact. It is important to keep in mind that for AI, meeting the expectations of this social contract is critical, because recklessly driving the adoption and implementation of unsafe, irresponsible, or unethical AI systems may trigger serious backlash against industry and academia involved which could take decades to resolve, if not actually seriously harm society. For the purpose of this paper, we consider that a social contract arises when there is sufficient consensus within society to adopt and implement this new technology. As such, to enable a social contract to arise for the adoption and implementation of AI, developing: 1) A socially accepted purpose, through 2) A safe and responsible method, with 3) A socially aware level of risk involved, for 4) A socially beneficial outcome, is key.
In the age of Artificial Intelligence and automation, machines have taken over many key managerial tasks. Replacing managers with AI systems may have a negative impact on workers outcomes. It is unclear if workers receive the same benefits from their relationships with AI systems, raising the question: What degree does the relationship between AI systems and workers impact worker outcomes? We draw on IT identity to understand the influence of identification with AI systems on job performance. From this theoretical perspective, we propose a research model and conduct a survey of 97 MTurk workers to test the model. The findings reveal that work role identity and organizational identity are key determinants of identification with AI systems. Furthermore, the findings show that identification with AI systems does increase job performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا