Do you want to publish a course? Click here

Motivic stable homotopy groups

205   0   0.0 ( 0 )
 Added by Daniel C. Isaksen
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We survey computations of stable motivic homotopy groups over various fields. The main tools are the motivic Adams spectral sequence, the motivic Adams-Novikov spectral sequence, and the effective slice spectral sequence. We state some projects for future study.



rate research

Read More

195 - Mark Behrens , Jay Shah 2019
We give a method for computing the C_2-equivariant homotopy groups of the Betti realization of a p-complete cellular motivic spectrum over R in terms of its motivic homotopy groups. More generally, we show that Betti realization presents the C_2-equivariant p-complete stable homotopy category as a localization of the p-complete cellular real motivic stable homotopy category.
We determine systematic regions in which the bigraded homotopy sheaves of the motivic sphere spectrum vanish.
185 - J. Heller , K. Ormsby 2014
For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and eta (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full and faithful embedding after eta-completion if a motivic version of Serres finiteness theorem is valid. We produce strong necessary conditions on the field extension L/k for this functor to be full and faithful. Along the way, we produce several results on the stable C_2-equivariant Betti realization functor and prove convergence theorems for the p-primary C_2-equivariant Adams spectral sequence.
Let F be a field of characteristic different than 2. We establish surjectivity of Balmers comparison map rho^* from the tensor triangular spectrum of the homotopy category of compact motivic spectra to the homogeneous Zariski spectrum of Milnor-Witt K-theory. We also comment on the tensor triangular geometry of compact cellular motivic spectra, producing in particular novel field spectra in this category. We conclude with a list of questions about the structure of the tensor triangular spectrum of the stable motivic homotopy category.
We discuss the current state of knowledge of stable homotopy groups of spheres. We describe a new computational method that yields a streamlined computation of the first 61 stable homotopy groups, and gives new information about the stable homotopy groups in dimensions 62 through 90. The method relies more heavily on machine computations than previous methods, and is therefore less prone to error. The main mathematical tool is the Adams spectral sequence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا