Do you want to publish a course? Click here

Almost compact moving breathers with fine-tuned discrete time quantum walks

115   0   0.0 ( 0 )
 Added by Ihor Vakulchyk
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Discrete time quantum walks are unitary maps defined on the Hilbert space of coupled two-level systems. We study the dynamics of excitations in a nonlinear discrete time quantum walk, whose fine-tuned linear counterpart has a flat band structure. The linear counterpart is, therefore, lacking transport, with exact solutions being compactly localized. A solitary entity of the nonlinear walk moving at velocity $v$ would therefore not suffer from resonances with small amplitude plane waves with identical phase velocity, due to the absence of the latter. That solitary excitation would also have to be localized stronger than exponential, due to the absence of a linear dispersion. We report on the existence of a set of stationary and moving breathers with almost compact superexponential spatial tails. At the limit of the largest velocity $v=1$ the moving breather turns into a completely compact bullet.



rate research

Read More

In this paper, interstitial migration generated by scattering with a mobile breather is investigated numerically in a Frenkel-Kontorova one-dimensional lattice. Consistent with experimental results it is shown that interstitial diffusion is more likely and faster than vacancy diffusion. Our simulations support the hypothesis that a long-range energy transport mechanism involving moving nonlinear vibrational excitations may significantly enhance the mobility of point defects in a crystal lattice.
We study the properties of discrete breathers, also known as intrinsic localized modes, in the one-dimensional Frenkel-Kontorova lattice of oscillators subject to damping and external force. The system is studied in the whole range of values of the coupling parameter, from C=0 (uncoupled limit) up to values close to the continuum limit (forced and damped sine-Gordon model). As this parameter is varied, the existence of different bifurcations is investigated numerically. Using Floquet spectral analysis, we give a complete characterization of the most relevant bifurcations, and we find (spatial) symmetry-breaking bifurcations which are linked to breather mobility, just as it was found in Hamiltonian systems by other authors. In this way moving breathers are shown to exist even at remarkably high levels of discreteness. We study mobile breathers and characterize them in terms of the phonon radiation they emit, which explains successfully the way in which they interact. For instance, it is possible to form ``bound states of moving breathers, through the interaction of their phonon tails. Over all, both stationary and moving breathers are found to be generic localized states over large values of $C$, and they are shown to be robust against low temperature fluctuations.
Quantum walk (QW) is the quantum analog of the random walk. QW is an integral part of the development of numerous quantum algorithms. Hence, an in-depth understanding of QW helps us to grasp the quantum algorithms. We revisit the one-dimensional discrete-time QW and discuss basic steps in detail by incorporating the most general coin operator. We investigate the impact of each parameter of the general coin operator on the probability distribution of the quantum walker. We show that by tuning the parameters of the general coin, one can regulate the probability distribution of the walker. We provide an algorithm for the one-dimensional quantum walk driven by the general coin operator. The study conducted on general coin operator also includes the popular coins -- Hadamard, Grover, and Fourier coins.
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a quantum walk. Since the effective walking graph of the projected walk is not necessarily simpler than the original, this may bring new insights into the dynamics of some kinds of quantum walks using known results from thoroughly studied cases like Euclidean lattices. We use abstract treatment of the walking space and walker displacements in aim for a generality of the presented statements. Using this approach we also identify some pathological cases in which the projection mapping breaks down. For walks on lattices, the operation typically results in quantum walks with hyper-dimensional coin spaces. Such walks can, conversely, be viewed as projections of walks on inaccessible, larger spaces, and their properties can be inferred from the parental walk. We show that this is is the case for a lazy quantum walk, a walk with large coherent jumps and a walk on a circle with a twisted boundary condition. We also discuss the relation of this theory to the time-multiplexing optical implementations of quantum walks. Moreover, this manifestly irreversible operation can, in some cases and with a minor adjustment, be undone, and a quantum walk can be reconstructed from a set of its projections.
We construct concrete examples of time operators for both continuous and discrete-time homogeneous quantum walks, and we determine their deficiency indices and spectra. For a discrete-time quantum walk, the time operator can be self-adjoint if the time evolution operator has a non-zero winding number. In this case, its spectrum becomes a discrete set of real numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا