Do you want to publish a course? Click here

One-dimensional discrete-time quantum walks with general coin

135   0   0.0 ( 0 )
 Added by Priodyuti Pradhan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum walk (QW) is the quantum analog of the random walk. QW is an integral part of the development of numerous quantum algorithms. Hence, an in-depth understanding of QW helps us to grasp the quantum algorithms. We revisit the one-dimensional discrete-time QW and discuss basic steps in detail by incorporating the most general coin operator. We investigate the impact of each parameter of the general coin operator on the probability distribution of the quantum walker. We show that by tuning the parameters of the general coin, one can regulate the probability distribution of the walker. We provide an algorithm for the one-dimensional quantum walk driven by the general coin operator. The study conducted on general coin operator also includes the popular coins -- Hadamard, Grover, and Fourier coins.



rate research

Read More

Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walkers sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing a method to efficiently compute the corresponding set of coin parameters. We assess the feasibility of our proposal by identifying a linear optics experiment based on photonic orbital angular momentum technology.
206 - Miquel Montero 2014
In this paper we unveil some features of a discrete-time quantum walk on the line whose coin depends on the temporal variable. After considering the most general form of the unitary coin operator, we focus on the role played by the two phase factors that one can incorporate there, and show how both terms influence the evolution of the system. A closer analysis reveals that the probabilistic properties of the motion of the walker remain unaltered when the update rule of these phases is chosen adequately. This invariance is based on a symmetry with consequences not yet fully explored.
Quantum walks are a promising framework for developing quantum algorithms and quantum simulations. Quantum walks represent an important test case for the application of quantum computers. Here we present different forms of discrete-time quantum walks and show their equivalence for physical realizations. Using an appropriate digital mapping of the position space on which a walker evolves onto the multi-qubit states in a quantum processor, we present different configurations of quantum circuits for the implementation of discrete-time quantum walks in one-dimensional position space. With example circuits for a five qubit machine we address scalability to higher dimensions and larger quantum processors.
122 - C. Cedzich , R. F. Werner 2015
We provide an explanation of recent experimental results of Xue et al., where full revivals in a time-dependent quantum walk model with a periodically changing coin are found. Using methods originally developed for electric walks with a space-dependent, rather than a time-dependent coin, we provide a full explanation of the observations of Xue et al. We extend the analysis from periodic time-dependence to quasi-periodic behaviour with periods incommensurate to the step size. Spectral analysis, one of the principal tools for the study of electric walks, fails for time-dependent systems, but we find qualitative propagation behaviour of the time-dependent system in close analogy to the electric case.
138 - Martin Stefanak , Igor Jex 2014
The control of quantum walk is made particularly transparent when the initial state is expressed in terms of the eigenstates of the coin operator. We show that the group-velocity density acquires a much simpler form when expressed in this basis. This allows us to obtain a much deeper understanding of the role of the initial coin state on the dynamics of quantum walks and control it. We find that the eigenvectors of the coin result in an extremal regime of a quantum walk. The approach is illustrated on two examples of quantum walks on a line.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا