We construct concrete examples of time operators for both continuous and discrete-time homogeneous quantum walks, and we determine their deficiency indices and spectra. For a discrete-time quantum walk, the time operator can be self-adjoint if the time evolution operator has a non-zero winding number. In this case, its spectrum becomes a discrete set of real numbers.
In this paper we consider a stochastic process that may experience random reset events which bring suddenly the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonous continuous-time random walks with a constant drift: the process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence|for any drift strength|of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
In this paper, we discuss several concepts of the modern theory of discrete integrable systems, including: - Time discretization based on the notion of Backlund transformation; - Symplectic realizations of multi-Hamiltonian structures; - Interrelations between discrete 1D systems and lattice 2D systems; - Multi-dimensional consistency as integrability of discrete systems; - Interrelations between integrable systems of quad-equations and integrable systems of Laplace type; - Pluri-Lagrangian structure as integrability of discrete variational systems. All these concepts are illustrated by the discrete time Toda lattices and their relativistic analogs.
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a quantum walk. Since the effective walking graph of the projected walk is not necessarily simpler than the original, this may bring new insights into the dynamics of some kinds of quantum walks using known results from thoroughly studied cases like Euclidean lattices. We use abstract treatment of the walking space and walker displacements in aim for a generality of the presented statements. Using this approach we also identify some pathological cases in which the projection mapping breaks down. For walks on lattices, the operation typically results in quantum walks with hyper-dimensional coin spaces. Such walks can, conversely, be viewed as projections of walks on inaccessible, larger spaces, and their properties can be inferred from the parental walk. We show that this is is the case for a lazy quantum walk, a walk with large coherent jumps and a walk on a circle with a twisted boundary condition. We also discuss the relation of this theory to the time-multiplexing optical implementations of quantum walks. Moreover, this manifestly irreversible operation can, in some cases and with a minor adjustment, be undone, and a quantum walk can be reconstructed from a set of its projections.
The main motivation of this article is to derive sufficient conditions for dynamical stability of periodically driven quantum systems described by a Hamiltonian H(t), i.e., conditions under which it holds sup_{t in R} | (psi(t),H(t) psi(t)) |<infty where psi(t) denotes a trajectory at time t of the quantum system under consideration. We start from an analysis of the domain of the quasi-energy operator. Next we show, under certain assumptions, that if the spectrum of the monodromy operator U(T,0) is pure point then there exists a dense subspace of initial conditions for which the mean value of energy is uniformly bounded in the course of time. Further we show that if the propagator admits a differentiable Floquet decomposition then || H(t) psi(t) || is bounded in time for any initial condition psi(0), and one employs the quantum KAM algorithm to prove the existence of this type of decomposition for a fairly large class of H(t). In addition, we derive bounds uniform in time on transition probabilities between different energy levels, and we also propose an extension of this approach to the case of a higher order of differentiability of the Floquet decomposition. The procedure is demonstrated on a solvable example of the periodically time-dependent harmonic oscillator.
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.