Keywords: nonequilibirum phenomena; diffusion in confined systems; dynamics and relaxation in confined systems; entropic transport in confined systems; ion and polymer translocation; forces induced by fluctuations; confined active mater; macromolecular crowding.
To understand the origin of the dynamical transition, between high temperature exponential relaxation and low temperature nonexponential relaxation, that occurs well above the static transition in glassy systems, a frustrated spin model, with and without disorder, is considered. The model has two phase transitions, the lower being a standard spin glass transition (in presence of disorder) or fully frustrated Ising (in absence of disorder), and the higher being a Potts transition. Monte Carlo results clarify that in the model with (or without) disorder the precursor phenomena are related to the Griffiths (or Potts) transition. The Griffiths transition is a vanishing transition which occurs above the Potts transition and is present only when disorder is present, while the Potts transition which signals the effect due to frustration is always present. These results suggest that precursor phenomena in frustrated systems are due either to disorder and/or to frustration, giving a consistent interpretation also for the limiting cases of Ising spin glass and of Ising fully frustrated model, where also the Potts transition is vanishing. This interpretation could play a relevant role in glassy systems beyond the spin systems case.
We investigate the particle and heat transport in quantum junctions with the geometry of star graphs. The system is in a nonequilibrium steady state, characterized by the different temperatures and chemical potentials of the heat reservoirs connected to the edges of the graph. We explore the Landauer-Buettiker state and its orbit under parity and time reversal transformations. Both particle number and total energy are conserved in these states. However the heat and chemical potential energy are in general not separately conserved, which gives origin to a basic process of energy transmutation among them. We study both directions of this process in detail, introducing appropriate efficiency coefficients. For scale invariant interactions in the junction our results are exact and explicit. They cover the whole parameter space and take into account all nonlinear effects. The energy transmutation depends on the particle statistics.
We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise on an equal footing. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. For a given tolerance parameter, the deviation from the Jarzynski equality depends onthe reduced coupling constant and the system size. In this work, we show that the deviation from the Jarzynski equality exhibits a universal scaling behavior inherited from the critical scaling laws of second-order phase transitions.
We study a coupled driven system in which two species of particles are advected by a fluctuating potential energy landscape. While the particles follow the potential gradient, each species affects the local shape of the landscape in different ways. As a result of this two-way coupling between the landscape and the particles, the system shows interesting new phases, characterized by different sorts of long ranged order in the particles and in the landscape. In all these ordered phases the two particle species phase separate completely from each other, but the underlying landscape may either show complete ordering, with macroscopic regions with distinct average slopes, or may show coexistence of ordered and disordered regions, depending on the differential nature of effect produced by the particle species on the landscape. We discuss several aspects of static properties of these phases in this paper, and we discuss the dynamics of these phases in the sequel.
We study the dynamical properties of the ordered phases obtained in a coupled nonequilibrium system describing advection of two species of particles by a stochastically evolving landscape. The local dynamics of the landscape also gets affected by the particles. In a companion paper we have presented static properties of different phases that arise as the two-way coupling parameters are varied. In this paper we discuss the dynamics. We show that in the ordered phases macroscopic particle clusters move over an ergodic time-scale growing exponentially with system size but the ordered landscape shows dynamics over a faster time-scale growing as a power of system size. We present a scaling ansatz that describes several dynamical correlation functions of the landscape measured in steady state.