Do you want to publish a course? Click here

Emergent Universality in Nonequilibrium Processes of Critical Systems

80   0   0.0 ( 0 )
 Added by Mahn-Soo Choi
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise on an equal footing. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. For a given tolerance parameter, the deviation from the Jarzynski equality depends onthe reduced coupling constant and the system size. In this work, we show that the deviation from the Jarzynski equality exhibits a universal scaling behavior inherited from the critical scaling laws of second-order phase transitions.

rate research

Read More

We extend the phase field crystal method for nonequilibrium patterning to stochastic systems with external source where transient dynamics is essential. It was shown that at short time scales the system manifests pattern selection processes. These processes are studied by means of the structure function dynamics analysis. Nonequilibrium pattern-forming transitions are analyzed by means of numerical simulations.
Long-range thermal fluctuations appear in fluids in nonequilibrium states leading to fluctuation-induced Casimir-like forces. Two distinct mechanisms have been identified for the origin of the long-range nonequilibrium fluctuations in fluids subjected to a temperature or concentration gradient. One is a coupling between the heat or mass-diffusion mode with a viscous mode in fluids subjected to a temperature or concentration gradient. Another one is the spatial inhomogeneity of thermal noise in the presence of a gradient. We show that in fluids fluctuation-induced forces arising from mode coupling are several orders of magnitude larger than those from inhomogeneous noise.
Discontinuous phase transitions out of equilibrium can be characterized by the behavior of macroscopic stochastic currents. But while much is known about the the average current, the situation is much less understood for higher statistics. In this paper, we address the consequences of the diverging metastability lifetime -- a hallmark of discontinuous transitions -- in the fluctuations of arbitrary thermodynamic currents, including the entropy production. In particular, we center our discussion on the emph{conditional} statistics, given which phase the system is in. We highlight the interplay between integration window and metastability lifetime, which is not manifested in the average current, but strongly influences the fluctuations. We introduce conditional currents and find, among other predictions, their connection to average and scaled variance through a finite-time version of Large Deviation Theory and a minimal model. Our results are then further verified in two paradigmatic models of discontinuous transitions: Schlogls model of chemical reactions, and a $12$-states Potts model subject to two baths at different temperatures.
182 - N. Khan , P. Sarkar , A. Midya 2016
Renormalization group theory does not restrict the from of continuous variation of critical exponents which occurs in presence of a marginal operator. However, the continuous variation of critical exponents, observed in different contexts, usually follows a weak universality scenario where some of the exponents (e.g., $beta, gamma, u$) vary keeping others (e.g., $delta , eta$) fixed. Here we report a ferromagnetic phase transition in (Sm$_{1-y}$Nd$_{y}$)$_{0.52}$Sr$_{0.48}$MnO$_3$ $(0.5le yle1)$ single crystal where all critical exponents vary with $y.$ Such variation clearly violates both universality and weak universality hypothesis. We propose a new scaling theory that explains the present experimental results, reduces to the weak universality as a special case, and provides a generic route leading to continuous variation of critical exponents and multicriticality.
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا