Do you want to publish a course? Click here

Vacuum Decay in General Relativity

120   0   0.0 ( 0 )
 Added by Thomas Bachlechner
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a novel, concise and self-contained evaluation of true- and false vacuum decay rates in general relativity. We insist on general covariance and choose observable boundary conditions, which yields the well known false-vacuum decay rate and a new true-vacuum decay rate that differs significantly from prior work. The rates of true- and false vacuum decays are identical in general relativity. The second variation of the action has a negative mode for all parameters. Our findings imply a new perspective on cosmological initial conditions and the ultimate fate of our universe.



rate research

Read More

The quantum field theoretic description of general relativity is a modern approach to gravity where gravitational force is carried by spin-2 gravitons. In the classical limit of this theory, general relativity as described by the Einstein field equations is obtained. This limit, where classical general relativity is derived from quantum field theory is the topic of this thesis. The Schwarzschild-Tangherlini metric, which describes the gravitational field of an inertial point particle in arbitrary space-time dimensions, $D$, is analyzed. The metric is related to the three-point vertex function of a massive scalar interacting with a graviton to all orders in $G_N$, and the one-loop contribution to this amplitude is computed from which the $G_N^2$ contribution to the metric is derived. To understand the gauge-dependence of the metric, covariant gauge is used which introduces the parameter, $xi$, and the gauge-fixing function $G_sigma$. In the classical limit, the gauge-fixing function turns out to be the coordinate condition, $G_sigma=0$. As gauge-fixing function a novel family of gauges, which depends on an arbitrary parameter $alpha$ and includes both harmonic and de Donder gauge, is used. Feynman rules for the graviton field are derived and important results are the graviton propagator in covariant gauge and a general formula for the n-graviton vertex in terms of the Einstein tensor. The Feynman rules are used both in deriving the Schwarzschild-Tangherlini metric from amplitudes and in the computation of the one-loop correction to the metric. The one-loop correction to the metric is independent of the covariant gauge parameter, $xi$, and satisfies the gauge condition $G_sigma=0$ where $G_sigma$ is the family of gauges depending on $alpha$. In space-time $D=5$ a logarithm appears in position space and this phenomena is analyzed in terms of redundant gauge freedom.
In this work we show that Einstein gravity in four dimensions can be consistently obtained from the compactification of a generic higher curvature Lovelock theory in dimension $D=4+p$, being $pgeq1$. The compactification is performed on a direct product space $mathcal{M}_D=mathcal{M}_4timesmathcal{K}^p$, where $mathcal{K}^p$ is a Euclidean internal manifold of constant curvature. The process is carried out in such a way that no fine tuning between the coupling constants is needed. The compactification requires to dress the internal manifold with the flux of suitable $p$-forms whose field strengths are proportional to the volume form of the internal space. We explicitly compactify Einstein-Gauss-Bonnet theory from dimension six to Einstein theory in dimension four and sketch out a similar procedure for this compactification to take place starting from dimension five. Several black string/p-branes solutions are constructed, among which, a five dimensional asymptotically flat black string composed of a Schwarzschild black hole on the brane is particularly interesting. Finally, the thermodynamic of the solutions is described and we find that the consistent compactification modifies the entropy by including a constant term, which may induce a departure from the usual behavior of the Hawking-Page phase transition. New scenarios are possible in which large black holes dominate the canonical ensamble for all temperatures above the minimal value.
Recently in the framework of a two-loop order calculation for an effective field theory of scalar and vector fields interacting with the metric field we have shown that for the cosmological constant term which is fixed by the condition of vanishing vacuum energy the graviton remains massless and there exists a self-consistent effective field theory of general relativity defined on a flat Minkowski background. In the current paper we extend the two-loop analysis for an effective field theory of fermions interacting with the gravitational field and obtain an analogous result. We also address the issues of fine tuning of the strong interaction contribution to the vacuum energy and the compatibility of chiral symmetry in the light quark sector with the consistency of the effective field theory of general relativity in a flat Minkowski background.
We discuss the BRST quantization of General Relativity (GR) with a cosmological constant in the unimodular gauge. We show how to gauge fix the transverse part of the diffeomorphism and then further to fulfill the unimodular gauge. This process requires the introduction of an additional pair of BRST doublets which decouple from the physical sector together with the other three pairs of BRST doublets for the transverse diffeomorphism. We show that the physical spectrum is the same as GR in the usual covariant gauge fixing. We then suggest to define the quantum theory of Unimodular Gravity (UG) by making Fourier transform of GR in the unimodular gauge with respect to the cosmological constant and slightly generalizing it. This suggests that the quantum theory of UG may describe the same theory as GR but the spacetime volume is fixed. We also discuss problems left in this formulation of UG.
We study general relativity at a null boundary using the covariant phase space formalism. We define a covariant phase space and compute the algebra of symmetries at the null boundary by considering the boundary-preserving diffeomorphisms that preserve this phase space. This algebra is the semi-direct sum of diffeomorphisms on the two sphere and a nonabelian algebra of supertranslations that has some similarities to supertranslations at null infinity. By using the general prescription developed by Wald and Zoupas, we derive the localized charges of this algebra at cross sections of the null surface as well as the associated fluxes. Our analysis is covariant and applies to general non-stationary null surfaces. We also derive the global charges that generate the symmetries for event horizons, and show that these obey the same algebra as the linearized diffeomorphisms, without any central extension. Our results show that supertranslations play an important role not just at null infinity but at all null boundaries, including non-stationary event horizons. They should facilitate further investigations of whether horizon symmetries and conservation laws in black hole spacetimes play a role in the information loss problem, as suggested by Hawking, Perry, and Strominger.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا