Recently in the framework of a two-loop order calculation for an effective field theory of scalar and vector fields interacting with the metric field we have shown that for the cosmological constant term which is fixed by the condition of vanishing vacuum energy the graviton remains massless and there exists a self-consistent effective field theory of general relativity defined on a flat Minkowski background. In the current paper we extend the two-loop analysis for an effective field theory of fermions interacting with the gravitational field and obtain an analogous result. We also address the issues of fine tuning of the strong interaction contribution to the vacuum energy and the compatibility of chiral symmetry in the light quark sector with the consistency of the effective field theory of general relativity in a flat Minkowski background.
We provide a novel, concise and self-contained evaluation of true- and false vacuum decay rates in general relativity. We insist on general covariance and choose observable boundary conditions, which yields the well known false-vacuum decay rate and a new true-vacuum decay rate that differs significantly from prior work. The rates of true- and false vacuum decays are identical in general relativity. The second variation of the action has a negative mode for all parameters. Our findings imply a new perspective on cosmological initial conditions and the ultimate fate of our universe.
The quantum field theoretic description of general relativity is a modern approach to gravity where gravitational force is carried by spin-2 gravitons. In the classical limit of this theory, general relativity as described by the Einstein field equations is obtained. This limit, where classical general relativity is derived from quantum field theory is the topic of this thesis. The Schwarzschild-Tangherlini metric, which describes the gravitational field of an inertial point particle in arbitrary space-time dimensions, $D$, is analyzed. The metric is related to the three-point vertex function of a massive scalar interacting with a graviton to all orders in $G_N$, and the one-loop contribution to this amplitude is computed from which the $G_N^2$ contribution to the metric is derived. To understand the gauge-dependence of the metric, covariant gauge is used which introduces the parameter, $xi$, and the gauge-fixing function $G_sigma$. In the classical limit, the gauge-fixing function turns out to be the coordinate condition, $G_sigma=0$. As gauge-fixing function a novel family of gauges, which depends on an arbitrary parameter $alpha$ and includes both harmonic and de Donder gauge, is used. Feynman rules for the graviton field are derived and important results are the graviton propagator in covariant gauge and a general formula for the n-graviton vertex in terms of the Einstein tensor. The Feynman rules are used both in deriving the Schwarzschild-Tangherlini metric from amplitudes and in the computation of the one-loop correction to the metric. The one-loop correction to the metric is independent of the covariant gauge parameter, $xi$, and satisfies the gauge condition $G_sigma=0$ where $G_sigma$ is the family of gauges depending on $alpha$. In space-time $D=5$ a logarithm appears in position space and this phenomena is analyzed in terms of redundant gauge freedom.
We explore the (non)-universality of Martinezs conjecture, originally proposed for Kerr black holes, within and beyond general relativity. The conjecture states that the Brown-York quasilocal energy at the outer horizon of such a black hole reduces to twice its irreducible mass, or equivalently, to sqrt{A} /(2sqrt{pi}), where `A is its area. We first consider the charged Kerr black hole. For such a spacetime, we calculate the quasilocal energy within a two-surface of constant Boyer-Lindquist radius embedded in a constant stationary-time slice. Keeping with Martinezs conjecture, at the outer horizon this energy equals the irreducible mass. The energy is positive and monotonically decreases to the ADM mass as the boundary-surface radius diverges. Next we perform an analogous calculation for the quasilocal energy for the Kerr-Sen spacetime, which corresponds to four-dimensional rotating charged black hole solutions in heterotic string theory. The behavior of this energy as a function of the boundary-surface radius is similar to the charged Kerr case. However, we show that in this case it does not approach the expression conjectured by Martinez at the horizon.
This is the continuation of an earlier work where Godel-type metrics were defined and used for producing new solutions in various dimensions. Here a simplifying technical assumption is relaxed which, among other things, basically amounts to introducing a dilaton field to the models considered. It is explicitly shown that the conformally transformed Godel-type metrics can be used in solving a rather general class of Einstein-Maxwell-dilaton-3-form field theories in D >= 6 dimensions. All field equations can be reduced to a simple Maxwell equation in the relevant (D-1)-dimensional Riemannian background due to a neat construction that relates the matter fields. These tools are then used in obtaining exact solutions to the bosonic parts of various supergravity theories. It is shown that there is a wide range of suitable backgrounds that can be used in producing solutions. For the specific case of (D-1)-dimensional trivially flat Riemannian backgrounds, the D-dimensional generalizations of the well known Majumdar-Papapetrou metrics of general relativity arise naturally.
We point out a misleading treatment and incorrect expressions in a recent paper published in this Journal [Eur. Phys. J. C (2019) 79: 541] regarding solutions for the Dirac equation in presence of scalar and vector potentials in a class of flat Godel-type space-time called Som-Raychaudhuri space-time. Following the appropriate procedure we obtain the solution for this system.
J. Gegelia
,Ulf-G. Mei{ss}ner
.
(2019)
.
"Vacuum energy in the effective field theory of general relativity II: Inclusion of fermions and a comment on the QCD contribution"
.
Ulf-G. Mei{\\ss}ner
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا