Do you want to publish a course? Click here

Spin transfer torques and spin-dependent transport in a metallic F/AF/N tunneling junction

122   0   0.0 ( 0 )
 Added by Kei Yamamoto
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study spin-dependent electron transport through a ferromagnetic-antiferromagnetic-normal metal tunneling junction subject to a voltage or temperature bias, in the absence of spin-orbit coupling. We derive microscopic formulas for various types of spin torque acting on the antiferromagnet as well as for charge and spin currents flowing through the junction. The obtained results are applicable in the limit of slow magnetization dynamics. We identify a parameter regime in which an unconventional damping-like torque can become comparable in magnitude to the equivalent of the conventional Slonczewskis torque generalized to antiferromagnets. Moreover, we show that the antiferromagnetic sublattice structure opens up a channel of electron transport which does not have a ferromagnetic analogue and that this mechanism leads to a pronounced field-like torque. Both charge conductance and spin current transmission through the junction depend on the relative orientation of the ferromagnetic and the antiferromagnetic vectors (order parameters). The obtained formulas for charge and spin currents allow us to identify the microscopic mechanisms responsible for this angular dependence and to assess the efficiency of an antiferromagnetic metal acting as a spin current polarizer.



rate research

Read More

Ultrafast demagnetization of magnetic layers pumped by a femtosecond laser pulse is accompanied by a nonthermal spin-polarized current of hot electrons. These spin currents are studied here theoretically in a spin valve with noncollinear magnetizations. To this end, we introduce an extended model of superdiffusive spin transport that enables to treat noncollinear magnetic configurations, and apply it to the perpendicular spin valve geometry. We show how spin-transfer torques arise due to this mechanism and calculate their action on the magnetization present, as well as how the latter depends on the thicknesses of the layers and other transport parameters. We demonstrate that there exists a certain optimum thickness of the out-of-plane magnetized spin-current polarizer such that the torque acting on the second magnetic layer is maximal. Moreover, we study the magnetization dynamics excited by the superdiffusive spin-transfer torque due to the flow of hot electrons employing the Landau-Lifshitz-Gilbert equation. Thereby we show that a femtosecond laser pulse applied to one magnetic layer can excite small-angle precessions of the magnetization in the second magnetic layer. We compare our calculations with recent experimental results.
We review a unified approach for computing: (i) spin-transfer torque in magnetic trilayers like spin-valves and magnetic tunnel junction, where injected charge current flows perpendicularly to interfaces; and (ii) spin-orbit torque in magnetic bilayers of the type ferromagnet/spin-orbit-coupled-material, where injected charge current flows parallel to the interface. Our approach requires to construct the torque operator for a given Hamiltonian of the device and the steady-state nonequilibrium density matrix, where the latter is expressed in terms of the nonequilibrium Greens functions and split into three contributions. Tracing these contributions with the torque operator automatically yields field-like and damping-like components of spin-transfer torque or spin-orbit torque vector, which is particularly advantageous for spin-orbit torque where the direction of these components depends on the unknown-in-advance orientation of the current-driven nonequilibrium spin density in the presence of spin-orbit coupling. We provide illustrative examples by computing spin-transfer torque in a one-dimensional toy model of a magnetic tunnel junction and realistic Co/Cu/Co spin-valve, both of which are described by first-principles Hamiltonians obtained from noncollinear density functional theory calculations; as well as spin-orbit torque in a ferromagnetic layer described by a tight-binding Hamiltonian which includes spin-orbit proximity effect within ferromagnetic monolayers assumed to be generated by the adjacent monolayer transition metal dichalcogenide.
We investigate the injection of quasiparticle spin currents into a superconductor via spin pumping from an adjacent FM layer.$;$To this end, we use NbN/ch{Ni80Fe20}(Py)-heterostructures with a Pt spin sink layer and excite ferromagnetic resonance in the Py-layer by placing the samples onto a coplanar waveguide (CPW). A phase sensitive detection of the microwave transmission signal is used to quantitatively extract the inductive coupling strength between sample and CPW, interpreted in terms of inverse current-induced torques, in our heterostructures as a function of temperature. Below the superconducting transition temperature $T_{mathrm{c}}$, we observe a suppression of the damping-like torque generated in the Pt layer by the inverse spin Hall effect (iSHE), which can be understood by the changes in spin current transport in the superconducting NbN-layer. Moreover, below $T_{mathrm{c}}$ we find a large field-like current-induced torque.
236 - Junji Fujimoto 2020
Electron transport in magnetic orders and the magnetic orders dynamics have a mutual dependence, which provides the key mechanisms in spin-dependent phenomena. Recently, antiferromagnetic orders are focused on as the magnetic order, where current-induced spin-transfer torques, a typical effect of electron transport on the magnetic order, have been debatable mainly because of the lack of an analytic derivation based on quantum field theory. Here, we construct the microscopic theory of spin-transfer torques on the slowly-varying staggered magnetization in antiferromagnets with weak canting. In our theory, the electron is captured by bonding/antibonding states, each of which is the eigenstate of the system, doubly degenerates, and spatially spreads to sublattices because of electron hopping. The spin of the eigenstates depends on the momentum in general, and a nontrivial spin-momentum locking arises for the case with no site inversion symmetry, without considering any spin-orbit couplings. The spin current of the eigenstates includes an anomalous component proportional to a kind of gauge field defined by derivatives in momentum space and induces the adiabatic spin-transfer torques on the magnetization. Unexpectedly, we find that one of the nonadiabatic torques has the same form as the adiabatic spin-transfer torque, while the obtained forms for the adiabatic and nonadiabatic spin-transfer torques agree with the phenomenological derivation based on the symmetry consideration. This finding suggests that the conventional explanation for the spin-transfer torques in antiferromagnets should be changed. Our microscopic theory provides a fundamental understanding of spin-related physics in antiferromagnets.
113 - Junwen Li , Paul M. Haney 2017
We study the optically induced torques in thin film ferromagnetic layers under excitation by circularly polarized light. We study cases both with and without Rashba spin-orbit coupling using a 4-band model. In the absence of Rashba spin-orbit coupling, we derive an analytic expression for the optical torques, revealing the conditions under which the torque is mostly derived from optical spin transfer torque (i.e. when the torque is along the direction of optical angular momentum), versus when the torque is derived from the inverse Faraday effect (i.e. when the torque is perpendicular to the optical angular momentum). We find the optical spin transfer torque dominates provided that the excitation energy is far away from band edge transitions, and the magnetic exchange splitting is much greater than the lifetime broadening. For the case with large Rashba spin-orbit coupling and out-of-plane magnetization, we find the torque is generally perpendicular to the photon angular momentum and is ascribed to an optical Edelstein effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا