Do you want to publish a course? Click here

Synthesis of Different Autonomous Vehicles Test Approaches

100   0   0.0 ( 0 )
 Added by Mansur Arief
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Currently, the most prevalent way to evaluate an autonomous vehicle is to directly test it on the public road. However, because of recent accidents caused by autonomous vehicles, it becomes controversial about whether on-road tests should be the best approach. Alternatively, people use test tracks or simulation to assess the safety of autonomous vehicles. These approaches are time-efficient and less costly, however, their credibility varies. In this paper, we propose to use a co-Kriging model to synthesize the results from different evaluation approaches, which allows us to fully utilize the information and provides an accurate, affordable, and safe way to assess a design of an autonomous vehicle.



rate research

Read More

An excellent self-driving car is expected to take its passengers safely and efficiently from one place to another. However, different ways of defining safety and efficiency may significantly affect the conclusion we make. In this paper, we give formal definitions to the safe state of a road and safe state of a vehicle using the syntax of linear temporal logic (LTL). We then propose the concept of safe driving throughput (SDT) and safe driving capacity (SDC) which measure the amount of vehicles in the safe state on a road. We analyze how SDT is affected by different factors. We show the analytic difference of SDC between the road with perception-based vehicles (PBV) and the road with cooperative-based vehicles (CBV). We claim that through proper design, the SDC of the road filled with PBVs will be upper-bounded by the SDC of the road filled with CBVs.
Autonomous Vehicles (AVs) raise important social and ethical concerns, especially about accountability, dignity, and justice. We focus on the specific concerns arising from how AV technology will affect the lives and livelihoods of professional and semi-professional drivers. Whereas previous studies of such concerns have focused on the opinions of experts, we seek to understand these ethical and societal challenges from the perspectives of the drivers themselves. To this end, we adopted a qualitative research methodology based on semi-structured interviews. This is an established social science methodology that helps understand the core concerns of stakeholders in depth by avoiding the biases of superficial methods such as surveys. We find that whereas drivers agree with the experts that AVs will significantly impact transportation systems, they are apprehensive about the prospects for their livelihoods and dismiss the suggestions that driving jobs are unsatisfying and their profession does not merit protection. By showing how drivers differ from the experts, our study has ramifications beyond AVs to AI and other advanced technologies. Our findings suggest that qualitative research applied to the relevant, especially disempowered, stakeholders is essential to ensuring that new technologies are introduced ethically.
Various automobile and mobility companies, for instance Ford, Uber and Waymo, are currently testing their pre-produced autonomous vehicle (AV) fleets on the public roads. However, due to rareness of the safety-critical cases and, effectively, unlimited number of possible traffic scenarios, these on-road testing efforts have been acknowledged as tedious, costly, and risky. In this study, we propose Accelerated De- ployment framework to safely and efficiently estimate the AVs performance on public streets. We showed that by appropriately addressing the gradual accuracy improvement and adaptively selecting meaningful and safe environment under which the AV is deployed, the proposed framework yield to highly accurate estimation with much faster evaluation time, and more importantly, lower deployment risk. Our findings provide an answer to the currently heated and active discussions on how to properly test AV performance on public roads so as to achieve safe, efficient, and statistically-reliable testing framework for AV technologies.
137 - Majid Khonji , Jorge Dias , 2019
A significant barrier to deploying autonomous vehicles (AVs) on a massive scale is safety assurance. Several technical challenges arise due to the uncertain environment in which AVs operate such as road and weather conditions, errors in perception and sensory data, and also model inaccuracy. In this paper, we propose a system architecture for risk-aware AVs capable of reasoning about uncertainty and deliberately bounding the risk of collision below a given threshold. We discuss key challenges in the area, highlight recent research developments, and propose future research directions in three subsystems. First, a perception subsystem that detects objects within a scene while quantifying the uncertainty that arises from different sensing and communication modalities. Second, an intention recognition subsystem that predicts the driving-style and the intention of agent vehicles (and pedestrians). Third, a planning subsystem that takes into account the uncertainty, from perception and intention recognition subsystems, and propagates all the way to control policies that explicitly bound the risk of collision. We believe that such a white-box approach is crucial for future adoption of AVs on a large scale.
Autonomous experimentation enabled by artificial intelligence (AI) offers a new paradigm for accelerating scientific discovery. Non-equilibrium materials synthesis is emblematic of complex, resource-intensive experimentation whose acceleration would be a watershed for materials discovery and development. The mapping of non-equilibrium synthesis phase diagrams has recently been accelerated via high throughput experimentation but still limits materials research because the parameter space is too vast to be exhaustively explored. We demonstrate accelerated synthesis and exploration of metastable materials through hierarchical autonomous experimentation governed by the Scientific Autonomous Reasoning Agent (SARA). SARA integrates robotic materials synthesis and characterization along with a hierarchy of AI methods that efficiently reveal the structure of processing phase diagrams. SARA designs lateral gradient laser spike annealing (lg-LSA) experiments for parallel materials synthesis and employs optical spectroscopy to rapidly identify phase transitions. Efficient exploration of the multi-dimensional parameter space is achieved with nested active learning (AL) cycles built upon advanced machine learning models that incorporate the underlying physics of the experiments as well as end-to-end uncertainty quantification. With this, and the coordination of AL at multiple scales, SARA embodies AI harnessing of complex scientific tasks. We demonstrate its performance by autonomously mapping synthesis phase boundaries for the Bi$_2$O$_3$ system, leading to orders-of-magnitude acceleration in establishment of a synthesis phase diagram that includes conditions for kinetically stabilizing $delta$-Bi$_2$O$_3$ at room temperature, a critical development for electrochemical technologies such as solid oxide fuel cells.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا