No Arabic abstract
Autonomous Vehicles (AVs) raise important social and ethical concerns, especially about accountability, dignity, and justice. We focus on the specific concerns arising from how AV technology will affect the lives and livelihoods of professional and semi-professional drivers. Whereas previous studies of such concerns have focused on the opinions of experts, we seek to understand these ethical and societal challenges from the perspectives of the drivers themselves. To this end, we adopted a qualitative research methodology based on semi-structured interviews. This is an established social science methodology that helps understand the core concerns of stakeholders in depth by avoiding the biases of superficial methods such as surveys. We find that whereas drivers agree with the experts that AVs will significantly impact transportation systems, they are apprehensive about the prospects for their livelihoods and dismiss the suggestions that driving jobs are unsatisfying and their profession does not merit protection. By showing how drivers differ from the experts, our study has ramifications beyond AVs to AI and other advanced technologies. Our findings suggest that qualitative research applied to the relevant, especially disempowered, stakeholders is essential to ensuring that new technologies are introduced ethically.
The expansion of artificial intelligence (AI) and autonomous systems has shown the potential to generate enormous social good while also raising serious ethical and safety concerns. AI technology is increasingly adopted in transportation. A survey of various in-vehicle technologies found that approximately 64% of the respondents used a smartphone application to assist with their travel. The top-used applications were navigation and real-time traffic information systems. Among those who used smartphones during their commutes, the top-used applications were navigation and entertainment. There is a pressing need to address relevant social concerns to allow for the development of systems of intelligent agents that are informed and cognizant of ethical standards. Doing so will facilitate the responsible integration of these systems in society. To this end, we have applied Multi-Criteria Decision Analysis (MCDA) to develop a formal Multi-Attribute Impact Assessment (MAIA) questionnaire for examining the social and ethical issues associated with the uptake of AI. We have focused on the domain of autonomous vehicles (AVs) because of their imminent expansion. However, AVs could serve as a stand-in for any domain where intelligent, autonomous agents interact with humans, either on an individual level (e.g., pedestrians, passengers) or a societal level.
Personal electronic devices including smartphones give access to behavioural signals that can be used to learn about the characteristics and preferences of individuals. In this study, we explore the connection between demographic and psychological attributes and the digital behavioural records, for a cohort of 7,633 people, closely representative of the US population with respect to gender, age, geographical distribution, education, and income. Along with the demographic data, we collected self-reported assessments on validated psychometric questionnaires for moral traits and basic human values and combined this information with passively collected multi-modal digital data from web browsing behaviour and smartphone usage. A machine learning framework was then designed to infer both the demographic and psychological attributes from the behavioural data. In a cross-validated setting, our models predicted demographic attributes with good accuracy as measured by the weighted AUROC score (Area Under the Receiver Operating Characteristic), but were less performant for the moral traits and human values. These results call for further investigation since they are still far from unveiling individuals psychological fabric. This connection, along with the most predictive features that we provide for each attribute, might prove useful for designing personalised services, communication strategies, and interventions, and can be used to sketch a portrait of people with a similar worldview.
The proliferation of electric vehicles has spurred the research interest in technologies associated with it, for instance, batteries, and charging mechanisms. Moreover, the recent advancements in autonomous cars also encourage the enabling technologies to integrate and provide holistic applications. To this end, one key requirement for electric vehicles is to have an efficient, secure, and scalable infrastructure and framework for charging, billing, and auditing. However, the current manual charging systems for EVs may not be applicable to the autonomous cars that demand new, automatic, secure, efficient, and scalable billing and auditing mechanism. Owing to the distributed systems such as blockchain technology, in this paper, we propose a new charging and billing mechanism for electric vehicles that charge their batteries in a charging-on-the-move fashion. To meet the requirements of billing in electric vehicles, we leverage distributed ledger technology (DLT), a distributed peer-to-peer technology for micro-transactions. Our proof-of-concept implementation of the billing framework demonstrates the feasibility of such system in electric vehicles. It is also worth noting that the solution can easily be extended to the electric autonomous cars (EACs).
Recently, Autonomous Vehicles (AVs) have gained extensive attention from both academia and industry. AVs are a complex system composed of many subsystems, making them a typical target for attackers. Therefore, the firmware of the different subsystems needs to be updated to the latest version by the manufacturer to fix bugs and introduce new features, e.g., using security patches. In this paper, we propose a distributed firmware update scheme for the AVs subsystems, leveraging blockchain and smart contract technology. A consortium blockchain made of different AVs manufacturers is used to ensure the authenticity and integrity of firmware updates. Instead of depending on centralized third parties to distribute the new updates, we enable AVs, namely distributors, to participate in the distribution process and we take advantage of their mobility to guarantee high availability and fast delivery of the updates. To incentivize AVs to distribute the updates, a reward system is established that maintains a credit reputation for each distributor account in the blockchain. A zero-knowledge proof protocol is used to exchange the update in return for a proof of distribution in a trust-less environment. Moreover, we use attribute-based encryption (ABE) scheme to ensure that only authorized AVs will be able to download and use a new update. Our analysis indicates that the additional cryptography primitives and exchanged transactions do not affect the operation of the AVs network. Also, our security analysis demonstrates that our scheme is efficient and secure against different attacks.
Do large datasets provide value to psychologists? Without a systematic methodology for working with such datasets, there is a valid concern that analyses will produce noise artifacts rather than true effects. In this paper, we offer a way to enable researchers to systematically build models and identify novel phenomena in large datasets. One traditional approach is to analyze the residuals of models---the biggest errors they make in predicting the data---to discover what might be missing from those models. However, once a dataset is sufficiently large, machine learning algorithms approximate the true underlying function better than the data, suggesting instead that the predictions of these data-driven models should be used to guide model-building. We call this approach Scientific Regret Minimization (SRM) as it focuses on minimizing errors for cases that we know should have been predictable. We demonstrate this methodology on a subset of the Moral Machine dataset, a public collection of roughly forty million moral decisions. Using SRM, we found that incorporating a set of deontological principles that capture dimensions along which groups of agents can vary (e.g. sex and age) improves a computational model of human moral judgment. Furthermore, we were able to identify and independently validate three interesting moral phenomena: criminal dehumanization, age of responsibility, and asymmetric notions of responsibility.