Do you want to publish a course? Click here

The turbulent pressure support in galaxy clusters revisited

80   0   0.0 ( 0 )
 Added by Franco Vazza
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Due to their late formation in cosmic history, clusters of galaxies are not fully in hydrostatic equilibrium and the gravitational pull of their mass at a given radius is expected not to be entirely balanced by the thermal gas pressure. Turbulence may supply additional pressure, and recent (X-ray and SZ) hydrostatic mass reconstructions claim a pressure support of $sim 5-15%$ of the total pressure at $R_{rm 200}$. In this work we show that, after carefully disentangling bulk from small-scale turbulent motions in high-resolution simulations of galaxy clusters, we can constrain which fraction of the gas kinetic energy effectively provides pressure support in the clusters gravitational potential. While the ubiquitous presence of radial inflows in the cluster can lead to significant bias in the estimate of the non-thermal pressure support, we report that only a part of this energy effectively acts as a source of pressure, providing a support of the order of $sim 10%$ of the total pressure at $R_{rm 200}$.



rate research

Read More

115 - Ian J. Parrish 2011
We use three-dimensional MHD simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on timescales of ~1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5-30% of the pressure support beyond r_500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non-thermal pressure support reduces the observed Sunyaev-Zeldovich (SZ) signal and X-ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature gradient-dependent bias in SZ and X-ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, sigma-8, through simulation templates from the observed amplitude of the SZ power spectrum.
Galaxy clusters are the endpoints of structure formation and are continuously growing through the merging and accretion of smaller structures. Numerical simulations predict that a fraction of their energy content is not yet thermalized, mainly in the form of kinetic motions (turbulence, bulk motions). Measuring the level of non-thermal pressure support is necessary to understand the processes leading to the virialization of the gas within the potential well of the main halo and to calibrate the biases in hydrostatic mass estimates. We present high-quality measurements of hydrostatic masses and intracluster gas fraction out to the virial radius for a sample of 12 nearby clusters with available XMM-Newton and Planck data. We compare our hydrostatic gas fractions with the expected universal gas fraction to constrain the level of non-thermal pressure support. We find that hydrostatic masses require little correction and infer a median non-thermal pressure fraction of $sim6%$ and $sim10%$ at $R_{500}$ and $R_{200}$, respectively. Our values are lower than the expectations of hydrodynamical simulations, possibly implying a faster thermalization of the gas. If instead we use the mass calibration adopted by the Planck team, we find that the gas fraction of massive local systems implies a mass bias $1-b=0.85pm0.05$ for SZ-derived masses, with some evidence for a mass-dependent bias. Conversely, the high bias required to match Planck CMB and cluster count cosmology is excluded by the data at high significance, unless the most massive halos are missing a substantial fraction of their baryons.
The hot, X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales significantly shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM has remained open. Here we present a plausible solution to this question based on deep Chandra X-ray observatory data and a new data-analysis method that enables us to evaluate directly the ICM heating rate due to the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius - it might therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in atmospheres of X-ray gas-rich systems.
We will discuss here how structures observed in clusters of galaxies can provide us insight on the formation and evolution of these objects. We will focus primarily on X-ray observations and results from hydrodynamical $N$-body simulations. This paper is based on a talk given at the School of Cosmology Jose Plinio Baptista -- `Cosmological perturbations and Structure Formation in Ubu/ES, Brazil.
436 - Hrant M. Tovmassian 2015
The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with $a/b>1.8$ and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60%, and clusters of BMI type with dominant cD galaxy, ~ 35%. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have merging with other clusters and groups of galaxies, in the result of which the rotation has been prevented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا