Do you want to publish a course? Click here

Turbulent Pressure Support in the Outer Parts of Galaxy Clusters

109   0   0.0 ( 0 )
 Added by Ian Parrish
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use three-dimensional MHD simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on timescales of ~1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5-30% of the pressure support beyond r_500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non-thermal pressure support reduces the observed Sunyaev-Zeldovich (SZ) signal and X-ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature gradient-dependent bias in SZ and X-ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, sigma-8, through simulation templates from the observed amplitude of the SZ power spectrum.



rate research

Read More

Due to their late formation in cosmic history, clusters of galaxies are not fully in hydrostatic equilibrium and the gravitational pull of their mass at a given radius is expected not to be entirely balanced by the thermal gas pressure. Turbulence may supply additional pressure, and recent (X-ray and SZ) hydrostatic mass reconstructions claim a pressure support of $sim 5-15%$ of the total pressure at $R_{rm 200}$. In this work we show that, after carefully disentangling bulk from small-scale turbulent motions in high-resolution simulations of galaxy clusters, we can constrain which fraction of the gas kinetic energy effectively provides pressure support in the clusters gravitational potential. While the ubiquitous presence of radial inflows in the cluster can lead to significant bias in the estimate of the non-thermal pressure support, we report that only a part of this energy effectively acts as a source of pressure, providing a support of the order of $sim 10%$ of the total pressure at $R_{rm 200}$.
Galaxy clusters are the endpoints of structure formation and are continuously growing through the merging and accretion of smaller structures. Numerical simulations predict that a fraction of their energy content is not yet thermalized, mainly in the form of kinetic motions (turbulence, bulk motions). Measuring the level of non-thermal pressure support is necessary to understand the processes leading to the virialization of the gas within the potential well of the main halo and to calibrate the biases in hydrostatic mass estimates. We present high-quality measurements of hydrostatic masses and intracluster gas fraction out to the virial radius for a sample of 12 nearby clusters with available XMM-Newton and Planck data. We compare our hydrostatic gas fractions with the expected universal gas fraction to constrain the level of non-thermal pressure support. We find that hydrostatic masses require little correction and infer a median non-thermal pressure fraction of $sim6%$ and $sim10%$ at $R_{500}$ and $R_{200}$, respectively. Our values are lower than the expectations of hydrodynamical simulations, possibly implying a faster thermalization of the gas. If instead we use the mass calibration adopted by the Planck team, we find that the gas fraction of massive local systems implies a mass bias $1-b=0.85pm0.05$ for SZ-derived masses, with some evidence for a mass-dependent bias. Conversely, the high bias required to match Planck CMB and cluster count cosmology is excluded by the data at high significance, unless the most massive halos are missing a substantial fraction of their baryons.
(Abridged) The main purpose of this paper is to consider the contribution of all three non-thermal components to total mass measurements of galaxy clusters: cosmic rays, turbulence and magnetic pressures. To estimate the thermal pressure we used public XMM-textit{Newton} archival data of 5 Abell clusters. To describe the magnetic pressure, we assume a radial distribution for the magnetic field, $B(r) propto rho_{g}^{alpha}$, to seek generality we assume $alpha$ within the range of 0.5 to 0.9, as indicated by observations and numerical simulations. For the turbulent component, we assumed an isotropic pressure, $P_{rm turb} = {1/3}rho_{rm g}(sigma_{r}^{2}+sigma_{t}^{2})$. We also consider the contribution of cosmic ray pressure, $P_{cr}propto r^{-0.5}$. It follows that a consistent description for the non-thermal component could yield variation in mass estimates that vary from 10% up to $sim$30%. We verified that in the inner parts of cool-core clusters the cosmic ray component is comparable to the magnetic pressure, while in non cool-core cluster the cosmic ray component is dominant. For cool-core clusters the magnetic pressure is the dominant component, contributing with more than 50% of total mass variation due to non-thermal pressure components. However, for non cool-core clusters, the major influence comes from the cosmic ray pressure that accounts with more than 80% of total mass variation due to non-thermal pressure effects. For our sample, the maximum influence of the turbulent component to total mass variation can be almost 20%. We show that this analysis can be regarded as a starting point for a more detailed and refined exploration of the influence of non-thermal pressure in the intra-cluster medium (ICM).
147 - D. Eckert , F. Vazza , S. Ettori 2011
We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond sim r500. Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond sim 0.3r200, which we explain by a different distribution of the gas in the two classes. Beyond sim r500, galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. [Abridged]
We analyze the radial pressure profiles, the ICM clumping factor and the Sunyaev-Zeldovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the TreePM-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, AGN and/or stellar feedback. Our results are analyzed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z=1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster center and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping ($sqrt C_{rho}sim 1.2$ at $R_{200}$) in good agreement with recent observational estimates. The simulated $Y_{SZ}-M$ scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا