No Arabic abstract
We have performed device-based tunnelling spectroscopy of NbSe$_2$ in the vortex state with a magnetic field applied both parallel and perpendicular to the $a-b$ plane. Our devices consist of layered semiconductors placed on top of exfoliated NbSe$_2$ using the van der Waals transfer technique. At zero field, the spectrum exhibits a hard gap, and the quasiparticle peak is split into low and high energy features. The two features, associated with the effective two-band nature of superconductivity in NbSe$_2$, exhibit markedly distinct responses to the application of magnetic field, suggesting an order-of-magnitude difference in the spatial extent of the vortex cores of the two bands. At energies below the superconducting gap, the hard gap gives way to vortex-bound Caroli-de Gennes-Matricon states, allowing the detection of individual vortices as they enter and exit the junction. Analysis of the sub-gap spectra upon application of parallel magnetic field allows us to track the process of vortex surface formation and spatial rearrangement in the bulk.
Tunnel junctions, a well-established platform for high-resolution spectroscopy of superconductors, require defect-free insulating barriers with clean engagement to metals on both sides. Extending the range of materials accessible to tunnel junction fabrication, beyond the limited selection which allows high-quality oxide formation, requires the development of alternative fabrication techniques. Here we show that van-der-Waals (vdW) tunnel barriers, fabricated by stacking layered semiconductors on top of the transition metal dichalcogenide (TMD) superconductor NbSe$_2$, sustain a stable, low noise tunneling current, and exhibit strong suppression of sub-gap tunneling. We utilize the technique to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) devices at 70 mK. The spectra exhibit two distinct energy gaps, the larger of which decreases monotonously with thickness and $T_C$, in agreement with BCS theory. The spectra are analyzed using a two-band model modified to account for depairing. We show that in the bulk, the smaller gap exhibits strong depairing in an in-plane magnetic field, consistent with a high Fermi velocity. In the few-layer devices, depairing of the large gap is negligible, consistent with out-of-plane spin-locking due to Ising spin-orbit coupling. Our results demonstrate the utility of vdW tunnel junctions in mapping the intricate spectral evolution of TMD superconductors over a range of magnetic fields.
Ultra low-loss microwave materials are crucial for enhancing quantum coherence and scalability of superconducting qubits. Van der Waals (vdW) heterostructure is an attractive platform for quantum devices due to the single-crystal structure of the constituent two-dimensional (2D) layered materials and the lack of dangling bonds at their atomically sharp interfaces. However, new fabrication and characterization techniques are required to determine whether these structures can achieve low loss in the microwave regime. Here we report the fabrication of superconducting microwave resonators using NbSe$_2$ that achieve a quality factor $Q > 10^5$. This value sets an upper bound that corresponds to a resistance of $leq 192 muOmega$ when considering the additional loss introduced by integrating NbSe$_2$ into a standard transmon circuit. This work demonstrates the compatibility of 2D layered materials with high-quality microwave quantum devices.
We report on fabrication of devices integrating FeTe$_{0.55}$Se$_{0.45}$ with other van-der-Waals materials, measuring transport properties as well as tunneling spectra at variable magnetic fields and temperatures down to 35 mK. Transport measurements are reliable and repeatable, revealing temperature and magnetic field dependence in agreement with prior results, confirming that fabrication processing does not alter bulk properties. However, cross-section scanning transmission microscopy reveals oxidation of the surface, which may explain a lower yield of tunneling device fabrication. We nonetheless observe hard-gap planar tunneling into FeTe$_{0.55}$Se$_{0.45}$ through a MoS$_2$ barrier. Notably, a minimal hard gap of 0.5 meV persists up to a magnetic field of 9 T in the $ab$ plane and 3 T out of plane. This may be the result of very small junction dimensions, or a quantum-limit minimal energy spacing between vortex bound states. We also observed defect assisted tunneling, exhibiting bias-symmetric resonant states which may arise due to resonant Andreev processes.
Superconductor-ferromagnet (S-F) interfaces in two-dimensional (2D) heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making an atomically-sharp interface from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. Owing to the remanent magnetic moment of the barrier, the critical current and the corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Through the control of this hysteresis, we can effectively trace the magnetic properties of atomic Cr2Ge2Te6 in response to the external magnetic field. Also, we observe a central minimum of critical current in some thick JJ devices, evidencing the coexistence of 0 and {pi} phase coupling in the junction region. Our study paves the way to exploring the sensitive probes of weak magnetism and multifunctional building blocks for phase-related superconducting circuits with the use of vdW heterostructures.
Thin transition metal dichalcogenides sustain superconductivity at large in-plane magnetic fields due to Ising spin-orbit protection, which locks their spins in an out-of-plane orientation. Here we use thin NbSe$_2$ as superconducting electrodes laterally coupled to graphene, making a planar, all van der Waals two-dimensional Josephson junction (2DJJ). We map out the behavior of these novel devices with respect to temperature, gate voltage, and both out-of-plane and in-plane magnetic fields. Notably, the 2DJJs sustain supercurrent up to $H_parallel$ as high as 8.5 T, where the Zeeman energy $E_Z$ rivals the Thouless energy $E_{Th}$, a regime hitherto inaccessible in graphene. As the parallel magnetic field $H_parallel$ increases, the 2DJJs critical current is suppressed and in a few cases undergoes suppression and recovery. We explore the behavior in $H_parallel$ by considering theoretically two effects: a 0-$pi$ transition induced by tuning of the Zeeman energy and the unique effect of ripples in an atomically thin layer which create a small spatially varying perpendicular component of the field. The 2DJJs have potential utility as flexible probes for two-dimensional superconductivity in a variety of materials and introduce high $H_parallel$ as a newly accessible experimental knob.