Do you want to publish a course? Click here

Quantum Topological Boundary States in Quasi-crystal

64   0   0.0 ( 0 )
 Added by Xian-Min Jin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological phase, a novel and fundamental role in matter, displays an extraordinary robustness to smooth changes in material parameters or disorder. A crossover between topological physics and quantum information may lead to inherent fault-tolerant quantum simulations and quantum computing. Quantum features may be preserved by being encoded among topological structures of physical evolution systems. This requires us to stimulate, manipulate and observe topological phenomena at single quantum particle level, which, however, hasnt been realized yet. Here, we address such a question whether the quantum features of single photons can be preserved in topological structures. We experimentally observe the boundary states of single photons and demonstrate the performance of topological phase on protecting the quantum features in quasi-periodic systems. Our work confirms the compatibility between macroscopic topological states and microscopic single photons on a photonic chip. We believe the emerging quantum topological photonics will add entirely new and versatile capacities into quantum technologies.



rate research

Read More

The symmetries associated with discrete-time quantum walks (DTQWs) and the flexibilities in controlling their dynamical parameters allow to create a large number of topological phases. An interface in position space, which separates two regions with different topological numbers, can, for example, be effectively modelled using different coin parameters for the walk on either side of the interface. Depending on the neighbouring numbers, this can lead to localized states in one-dimensional configurations and here we carry out a detailed study into the strength of such localized states. We show that it can be related to the amount of entanglement created by the walks, with minima appearing for strong localizations. This feature also persists in the presence of small amounts of $sigma_x$ (bit flip) noise.
One of the most fundamental problems in quantum many-body physics is the characterization of correlations among thermal states. Of particular relevance is the thermal area law, which justifies the tensor network approximations to thermal states with a bond dimension growing polynomially with the system size. In the regime of sufficiently low temperatures, which is particularly important for practical applications, the existing techniques do not yield optimal bounds. Here, we propose a new thermal area law that holds for generic many-body systems on lattices. We improve the temperature dependence from the original $mathcal{O}(beta)$ to $tilde{mathcal{O}}(beta^{2/3})$, thereby suggesting diffusive propagation of entanglement by imaginary time evolution. This qualitatively differs from the real-time evolution which usually induces linear growth of entanglement. We also prove analogous bounds for the Renyi entanglement of purification and the entanglement of formation. Our analysis is based on a polynomial approximation to the exponential function which provides a relationship between the imaginary-time evolution and random walks. Moreover, for one-dimensional (1D) systems with $n$ spins, we prove that the Gibbs state is well-approximated by a matrix product operator with a sublinear bond dimension of $e^{sqrt{tilde{mathcal{O}}(beta log(n))}}$. This proof allows us to rigorously establish, for the first time, a quasi-linear time classical algorithm for constructing an MPS representation of 1D quantum Gibbs states at arbitrary temperatures of $beta = o(log(n))$. Our new technical ingredient is a block decomposition of the Gibbs state, that bears resemblance to the decomposition of real-time evolution given by Haah et al., FOCS18.
Classical chimera states are paradigmatic examples of partial synchronization patterns emerging in nonlinear dynamics. These states are characterized by the spatial coexistence of two dramatically different dynamical behaviors, i.e., synchronized and desynchronized dynamics. Our aim in this contribution is to discuss signatures of chimera states in quantum mechanics. We study a network with a ring topology consisting of N coupled quantum Van der Pol oscillators. We describe the emergence of chimera-like quantum correlations in the covariance matrix. Further, we establish the connection of chimera states to quantum information theory by describing the quantum mutual information for a bipartite state of the network.
We report the observation of a symmetry-protected topological time crystal, which is implemented with an array of programmable superconducting qubits. Unlike the time crystals reported in previous experiments, where spontaneous breaking of the discrete time translational symmetry occurs for local observables throughout the whole system, the topological time crystal observed in our experiment breaks the time translational symmetry only at the boundaries and has trivial dynamics in the bulk. More concretely, we observe robust long-lived temporal correlations and sub-harmonic temporal response for the edge spins up to 40 driving cycles. We demonstrate that the sub-harmonic response is independent of whether the initial states are random product states or symmetry-protected topological states, and experimentally map out the phase boundary between the time crystalline and thermal phases. Our work paves the way to exploring peculiar non-equilibrium phases of matter emerged from the interplay between topology and localization as well as periodic driving, with current noisy intermediate-scale quantum processors.
We review the development of generative modeling techniques in machine learning for the purpose of reconstructing real, noisy, many-qubit quantum states. Motivated by its interpretability and utility, we discuss in detail the theory of the restricted Boltzmann machine. We demonstrate its practical use for state reconstruction, starting from a classical thermal distribution of Ising spins, then moving systematically through increasingly complex pure and mixed quantum states. Intended for use on experimental noisy intermediate-scale quantum (NISQ) devices, we review recent efforts in reconstruction of a cold atom wavefunction. Finally, we discuss the outlook for future experimental state reconstruction using machine learning, in the NISQ era and beyond.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا