No Arabic abstract
We report the observation of a symmetry-protected topological time crystal, which is implemented with an array of programmable superconducting qubits. Unlike the time crystals reported in previous experiments, where spontaneous breaking of the discrete time translational symmetry occurs for local observables throughout the whole system, the topological time crystal observed in our experiment breaks the time translational symmetry only at the boundaries and has trivial dynamics in the bulk. More concretely, we observe robust long-lived temporal correlations and sub-harmonic temporal response for the edge spins up to 40 driving cycles. We demonstrate that the sub-harmonic response is independent of whether the initial states are random product states or symmetry-protected topological states, and experimentally map out the phase boundary between the time crystalline and thermal phases. Our work paves the way to exploring peculiar non-equilibrium phases of matter emerged from the interplay between topology and localization as well as periodic driving, with current noisy intermediate-scale quantum processors.
Spontaneous symmetry breaking is a fundamental concept in many areas of physics, ranging from cosmology and particle physics to condensed matter. A prime example is the breaking of spatial translation symmetry, which underlies the formation of crystals and the phase transition from liquid to solid. Analogous to crystals in space, the breaking of translation symmetry in time and the emergence of a time crystal was recently proposed, but later shown to be forbidden in thermal equilibrium. However, non-equilibrium Floquet systems subject to a periodic drive can exhibit persistent time-correlations at an emergent sub-harmonic frequency. This new phase of matter has been dubbed a discrete time crystal (DTC). Here, we present the first experimental observation of a discrete time crystal, in an interacting spin chain of trapped atomic ions. We apply a periodic Hamiltonian to the system under many-body localization (MBL) conditions, and observe a sub-harmonic temporal response that is robust to external perturbations. Such a time crystal opens the door for studying systems with long-range spatial-temporal correlations and novel phases of matter that emerge under intrinsically non-equilibrium conditions.
The conventional framework for defining and understanding phases of matter requires thermodynamic equilibrium. Extensions to non-equilibrium systems have led to surprising insights into the nature of many-body thermalization and the discovery of novel phases of matter, often catalyzed by driving the system periodically. The inherent heating from such Floquet drives can be tempered by including strong disorder in the system, but this can also mask the generality of non-equilibrium phases. In this work, we utilize a trapped-ion quantum simulator to observe signatures of a non-equilibrium driven phase without disorder: the prethermal discrete time crystal (PDTC). Here, many-body heating is suppressed not by disorder-induced many-body localization, but instead via high-frequency driving, leading to an expansive time window where non-equilibrium phases can emerge. We observe a number of key features that distinguish the PDTC from its many-body-localized disordered counterpart, such as the drive-frequency control of its lifetime and the dependence of time-crystalline order on the energy density of the initial state. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing and studying intrinsically out-of-equilibrium phases of matter.
The second law of thermodynamics points to the existence of an `arrow of time, along which entropy only increases. This arises despite the time-reversal symmetry (TRS) of the microscopic laws of nature. Within quantum theory, TRS underpins many interesting phenomena, most notably topological insulators and the Haldane phase of quantum magnets. Here, we demonstrate that such TRS-protected effects are fundamentally unstable against coupling to an environment. Irrespective of the microscopic symmetries, interactions between a quantum system and its surroundings facilitate processes which would be forbidden by TRS in an isolated system. This leads not only to entanglement entropy production and the emergence of macroscopic irreversibility, but also to the demise of TRS-protected phenomena, including those associated with certain symmetry-protected topological phases. Our results highlight the enigmatic nature of TRS in quantum mechanics, and elucidate potential challenges in utilising topological systems for quantum technologies.
Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dynamical phases can be defined in periodically driven many-body localized systems via the concept of eigenstate order. In eigenstate-ordered phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, wherein few select states can mask typical behavior. Here we implement a continuous family of tunable CPHASE gates on an array of superconducting qubits to experimentally observe an eigenstate-ordered DTC. We demonstrate the characteristic spatiotemporal response of a DTC for generic initial states. Our work employs a time-reversal protocol that discriminates external decoherence from intrinsic thermalization, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. In addition, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
Topological insulators and superconductors at finite temperature can be characterized by the topological Uhlmann phase. However, a direct experimental measurement of this invariant has remained elusive in condensed matter systems. Here, we report a measurement of the topological Uhlmann phase for a topological insulator simulated by a system of entangled qubits in the IBM Quantum Experience platform. By making use of ancilla states, otherwise unobservable phases carrying topological information about the system become accessible, enabling the experimental determination of a complete phase diagram including environmental effects. We employ a state-independent measurement protocol which does not involve prior knowledge of the system state. The proposed measurement scheme is extensible to interacting particles and topological models with a large number of bands.