Do you want to publish a course? Click here

Calibration of the oscillation amplitude of electrically excited scanning probe microscopy sensors

74   0   0.0 ( 0 )
 Added by Omur Dagdeviren
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atomic force microscopy (AFM) is an analytical surface characterization tool which can reveal a samples topography with high spatial resolution while simultaneously probing tip-sample interactions. Local measurement of chemical properties with high-resolution has gained much popularity in recent years with advances in dynamic AFM methodologies. A calibration factor is required to convert the electrical readout to a mechanical oscillation amplitude in order to extract quantitative information about the surface. We propose a new calibration technique for the oscillation amplitude of electrically driven probes, which is based on measuring the electrical energy input to maintain the oscillation amplitude constant. We demonstrate the application of the new technique with quartz tuning fork including the qPlus configuration, while the same principle can be applied to other piezoelectric resonators such as length extension resonators, or piezoelectric cantilevers. The calibration factor obtained by this technique is found to be in agreement with using thermal noise spectrum method for capsulated, decapsulated tuning forks and tuning forks in the qPlus configuration.



rate research

Read More

With recent advances in scanning probe microscopy (SPM), it is now routine to determine the atomic structure of surfaces and molecules while quantifying the local tip-sample interaction potentials. Such quantitative experiments are based on the accurate measurement of the resonance frequency shift due to the tip-sample interaction. Here, we experimentally show that the resonance frequency of oscillating probes used for SPM experiments change systematically as a function of oscillation amplitude under typical operating conditions. This change in resonance frequency is not due to tip-sample interactions, but rather due to the cantilever strain or geometric effects and thus the resonance frequency being a function of the oscillation amplitude. Our numerical calculations demonstrate that the amplitude dependence of the resonance frequency is an additional yet overlooked systematic error source that can result nonnegligible errors in measured interaction potentials and forces. Our experimental results and complementary numerical calculations reveal that the frequency shift due to this amplitude dependence needs to be corrected even for experiments with active oscillation amplitude control to be able to quantify the tip-sample interaction potentials and forces with milli-electron volt and pico-Newton resolutions.
Spin-polarized scanning tunneling microscopy (SP-STM) measures tunnel magnetoresistance (TMR) with atomic resolution. While various methods for achieving SP probes have been developed, each is limited with respect to fabrication, performance, and allowed operating conditions. In this study, we present the fabrication and use of SP-STM tips made from commercially available antiferromagnetic $rm{Mn_{88}Ni_{12}}$ foil. The tips are intrinsically SP, which is attractive for exploring magnetic phenomena in the zero field limit. The tip material is relatively ductile and straightforward to etch. We benchmark the conventional STM and spectroscopic performance of our tips and demonstrate their spin sensitivity by measuring the two-state switching of holmium single atom magnets on MgO/Ag(100).
The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eigenmodes. Here, we present a methodology to spatially image the micro-mechanical resonances of a toroid microcavity using a scanning probe technique. The method relies on recording the induced frequency shift of the mechanical eigenmode when in contact with a scanning probe tip. The method is passive in nature and achieves a sensitivity sufficient to spatially resolve the vibrational mode pattern associated with the thermally agitated displacement at room temperature. The recorded mechanical mode patterns are in good qualitative agreement with the theoretical strain fields as obtained by finite element simulations.
In recent years, self-assembled semiconductor nanowires have been successfully used as ultra-sensitive cantilevers in a number of unique scanning probe microscopy (SPM) settings. We describe the fabrication of ultra-low dissipation patterned silicon nanowire (SiNW) arrays optimized for scanning probe applications. Our fabrication process produces, with high yield, ultra-high aspect ratio vertical SiNWs that exhibit exceptional force sensitivity. The highest sensitivity SiNWs have thermomechanical-noise limited force sensitivity of $9.7pm0.4~text{aN}/sqrt{text{Hz}}$ at room temperature and $500pm20~text{zN}/sqrt{text{Hz}}$ at 4 K. To facilitate their use in SPM, the SiNWs are patterned within $7~mutext{m}$ from the edge of the substrate, allowing convenient optical access for displacement detection.
We report the development of a scanning force microscope based on an ultra-sensitive silicon nitride membrane transducer. Our development is made possible by inverting the standard microscope geometry - in our instrument, the substrate is vibrating and the scanning tip is at rest. We present first topography images of samples placed on the membrane surface. Our measurements demonstrate that the membrane retains an excellent force sensitivity when loaded with samples and in the presence of a scanning tip. We discuss the prospects and limitations of our instrument as a quantum-limited force sensor and imaging tool.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا