No Arabic abstract
With recent advances in scanning probe microscopy (SPM), it is now routine to determine the atomic structure of surfaces and molecules while quantifying the local tip-sample interaction potentials. Such quantitative experiments are based on the accurate measurement of the resonance frequency shift due to the tip-sample interaction. Here, we experimentally show that the resonance frequency of oscillating probes used for SPM experiments change systematically as a function of oscillation amplitude under typical operating conditions. This change in resonance frequency is not due to tip-sample interactions, but rather due to the cantilever strain or geometric effects and thus the resonance frequency being a function of the oscillation amplitude. Our numerical calculations demonstrate that the amplitude dependence of the resonance frequency is an additional yet overlooked systematic error source that can result nonnegligible errors in measured interaction potentials and forces. Our experimental results and complementary numerical calculations reveal that the frequency shift due to this amplitude dependence needs to be corrected even for experiments with active oscillation amplitude control to be able to quantify the tip-sample interaction potentials and forces with milli-electron volt and pico-Newton resolutions.
Atomic force microscopy (AFM) is an analytical surface characterization tool which can reveal a samples topography with high spatial resolution while simultaneously probing tip-sample interactions. Local measurement of chemical properties with high-resolution has gained much popularity in recent years with advances in dynamic AFM methodologies. A calibration factor is required to convert the electrical readout to a mechanical oscillation amplitude in order to extract quantitative information about the surface. We propose a new calibration technique for the oscillation amplitude of electrically driven probes, which is based on measuring the electrical energy input to maintain the oscillation amplitude constant. We demonstrate the application of the new technique with quartz tuning fork including the qPlus configuration, while the same principle can be applied to other piezoelectric resonators such as length extension resonators, or piezoelectric cantilevers. The calibration factor obtained by this technique is found to be in agreement with using thermal noise spectrum method for capsulated, decapsulated tuning forks and tuning forks in the qPlus configuration.
Spin-polarized scanning tunneling microscopy (SP-STM) measures tunnel magnetoresistance (TMR) with atomic resolution. While various methods for achieving SP probes have been developed, each is limited with respect to fabrication, performance, and allowed operating conditions. In this study, we present the fabrication and use of SP-STM tips made from commercially available antiferromagnetic $rm{Mn_{88}Ni_{12}}$ foil. The tips are intrinsically SP, which is attractive for exploring magnetic phenomena in the zero field limit. The tip material is relatively ductile and straightforward to etch. We benchmark the conventional STM and spectroscopic performance of our tips and demonstrate their spin sensitivity by measuring the two-state switching of holmium single atom magnets on MgO/Ag(100).
In recent years, self-assembled semiconductor nanowires have been successfully used as ultra-sensitive cantilevers in a number of unique scanning probe microscopy (SPM) settings. We describe the fabrication of ultra-low dissipation patterned silicon nanowire (SiNW) arrays optimized for scanning probe applications. Our fabrication process produces, with high yield, ultra-high aspect ratio vertical SiNWs that exhibit exceptional force sensitivity. The highest sensitivity SiNWs have thermomechanical-noise limited force sensitivity of $9.7pm0.4~text{aN}/sqrt{text{Hz}}$ at room temperature and $500pm20~text{zN}/sqrt{text{Hz}}$ at 4 K. To facilitate their use in SPM, the SiNWs are patterned within $7~mutext{m}$ from the edge of the substrate, allowing convenient optical access for displacement detection.
Scanning probe microscopy is one of the most versatile windows into the nanoworld, providing imaging access to a variety of sample properties, depending on the probe employed. Tunneling probes map electronic properties of samples, magnetic and photonic probes image their magnetic and dielectric structure while sharp tips probe mechanical properties like surface topography, friction or stiffness. Most of these observables, however, are accessible only under limited circumstances. For instance, electronic properties are measurable only on conducting samples while atomic-resolution force microscopy requires careful preparation of samples in ultrahigh vacuum or liquid environments. Here we demonstrate a scanning probe imaging method that extends the range of accessible quantities to label-free imaging of chemical species operating on arbitrary samples - including insulating materials - under ambient conditions. Moreover, it provides three-dimensional depth information, thus revealing subsurface features. We achieve these results by recording nuclear magnetic resonance signals from a sample surface with a recently introduced scanning probe, a single nitrogen-vacancy center in diamond. We demonstrate NMR imaging with 10 nm resolution and achieve chemically specific contrast by separating fluorine from hydrogen rich regions. Our result opens the door to scanning probe imaging of the chemical composition and atomic structure of arbitrary samples. A method with these abilities will find widespread application in material science even on biological specimens down to the level of single macromolecules.
We report the development of a scanning force microscope based on an ultra-sensitive silicon nitride membrane transducer. Our development is made possible by inverting the standard microscope geometry - in our instrument, the substrate is vibrating and the scanning tip is at rest. We present first topography images of samples placed on the membrane surface. Our measurements demonstrate that the membrane retains an excellent force sensitivity when loaded with samples and in the presence of a scanning tip. We discuss the prospects and limitations of our instrument as a quantum-limited force sensor and imaging tool.