Do you want to publish a course? Click here

Dagger linear logic for categorical quantum mechanics

105   0   0.0 ( 0 )
 Added by Robin Cockett Dr.
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Categorical quantum mechanics exploits the dagger-compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of quantum physics, however, involves reasoning about infinite dimensional processes, and it is well-known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of using dagger-compact closed categories is that one cannot directly accommodate reasoning about infinite dimensional processes. A natural categorical generalization of compact closed categories, in which infinite dimensional spaces can be modelled, is *-autonomous categories and, more generally, linearly distributive categories. These notes start the development of this direction of generalizing categorical quantum mechanics. An important first step is to establish the behaviour of the dagger in these more general settings. Thus, these notes simultaneously develop the categorical semantics of multiplicative dag-linear logic. The notes end with the definition of a mixed unitary category. It is this structure which is subsequently used to extend the key features of categorical quantum mechanics.



rate research

Read More

We develop a notion of limit for dagger categories, that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases.
129 - Thomas Ehrhard 2020
We develop a denotational semantics of muLL, a version of propositional Linear Logic with least and greatest fixed points extending David Baeldes propositional muMALL with exponentials. Our general categorical setting is based on the notion of Seely category and on strong functors acting on them. We exhibit two simple instances of this setting. In the first one, which is based on the category of sets and relations, least and greatest fixed points are interpreted in the same way. In the second one, based on a category of sets equipped with a notion of totality (non-uniform totality spaces) and relations preserving them, least and greatest fixed points have distinct interpretations. This latter model shows that muLL enjoys a denotational form of normalization of proofs.
Ultrafilters are useful mathematical objects having applications in nonstandard analysis, Ramsey theory, Boolean algebra, topology, and other areas of mathematics. In this note, we provide a categorical construction of ultrafilters in terms of the inverse limit of an inverse family of finite partitions; this is an elementary and intuitive presentation of a consequence of the profiniteness of Stone spaces. We then apply this construction to answer a question of Rosinger posed in arXiv:0709.0084v2 in the negative.
We discuss the relationship between (co)homology groups and categorical diagonalization. We consider the category of chain complexes in the category of finitely generated free modules on a commutative ring. For a fixed chain complex with zero maps as an object, a chain map from the object to another chain complex is defined, and the chain map introduce a mapping cone. We found that the fixed object is isomorphic to the (co)homology groups of the codomain of the chain map if and only if the chain map is injective to the cokernel of differentials of the codomain chain complex and the mapping cone is homotopy equivalent to zero. On the other hand, the fixed object is regarded as a categorified eigenvalue of the chain complex in the context of the categorical diagonalization introduced by B.Elias and M. Hogancamp arXiv:1801.00191v1. It is found that (co)homology groups are constructed as the eigenvalue of a chain complex.
74 - Lingyuan Ye 2021
In this paper, we use a categorical and functorial set up to model the syntax and inference of logics of algebraic signature, extending previous works on algebraisation of logics. The main feature of this work is that structurality, or invariance under substitution of variables, are modelled by functoriality in this paper, resulting in a much clearer framework for algebraisation. It also provides a very nice conceptual understanding of various existing results already established in the literatures, and derives several new results as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا