We develop a notion of limit for dagger categories, that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases.
We introduce partially lax limits of infinity-categories, which interpolate between ordinary limits and lax limits. Most naturally occurring examples of lax limits are only partially lax; we give examples arising from enriched categories and operads. Our main result is a formula for partially lax limits and colimits in terms of the Grothendieck construction. This generalizes a formula of Lurie for ordinary limits and of Gepner-Haugseng-Nikolaus for fully lax limits.
Categorical quantum mechanics exploits the dagger-compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of quantum physics, however, involves reasoning about infinite dimensional processes, and it is well-known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of using dagger-compact closed categories is that one cannot directly accommodate reasoning about infinite dimensional processes. A natural categorical generalization of compact closed categories, in which infinite dimensional spaces can be modelled, is *-autonomous categories and, more generally, linearly distributive categories. These notes start the development of this direction of generalizing categorical quantum mechanics. An important first step is to establish the behaviour of the dagger in these more general settings. Thus, these notes simultaneously develop the categorical semantics of multiplicative dag-linear logic. The notes end with the definition of a mixed unitary category. It is this structure which is subsequently used to extend the key features of categorical quantum mechanics.
Restriction categories were introduced to provide an axiomatic setting for the study of partially defined mappings; they are categories equipped with an operation called restriction which assigns to every morphism an endomorphism of its domain, to be thought of as the partial identity that is defined to just the same degree as the original map. In this paper, we show that restriction categories can be identified with emph{enriched categories} in the sense of Kelly for a suitable enrichment base. By varying that base appropriately, we are also able to capture the notions of join and range restriction category in terms of enriched category theory.
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is an operation of restriction to an idempotent subunit: it is a graded monad on the category, and has the universal property of algebraic localisation. Spacetime structure on the base space induces a closure operator on the idempotent subunits. Restriction is then interpreted as spacetime propagation. This lets us study relativistic quantum information theory using methods entirely internal to monoidal categories. As a proof of concept, we show that quantum teleportation is only successfully supported on the intersection of Alice and Bobs causal future.
We introduce the notions of proto-complete, complete, complete* and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete.