Do you want to publish a course? Click here

Equivalence of relative Gibbs and relative equilibrium measures for actions of countable amenable groups

57   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We formulate and prove a very general relative version of the Dobrushin-Lanford-Ruelle theorem which gives conditions on constraints of configuration spaces over a finite alphabet such that for every absolutely summable relative interaction, every translation-invariant relative Gibbs measure is a relative equilibrium measure and vice versa. Neither implication is true without some assumption on the space of configurations. We note that the usual finite type condition can be relaxed to a much more general class of constraints. By relative we mean that both the interaction and the set of allowed configurations are determined by a random environment. The result includes many special cases that are well known. We give several applications including (1) Gibbsian properties of measures that maximize pressure among all those that project to a given measure via a topological factor map from one symbolic system to another; (2) Gibbsian properties of equilibrium measures for group shifts defined on arbitrary countable amenable groups; (3) A Gibbsian characterization of equilibrium measures in terms of equilibrium condition on lattice slices rather than on finite sets; (4) A relative extension of a theorem of Meyerovitch, who proved a version of the Lanford--Ruelle theorem which shows that every equilibrium measure on an arbitrary subshift satisfies a Gibbsian property on interchangeable patterns.



rate research

Read More

We lay the foundations for the study of relatively quasiconvex subgroups of relatively hyperbolic groups. These foundations require that we first work out a coherent theory of countable relatively hyperbolic groups (not necessarily finitely generated). We prove the equivalence of Gromov, Osin, and Bowditchs definitions of relative hyperbolicity for countable groups. We then give several equivalent definitions of relatively quasiconvex subgroups in terms of various natural geometries on a relatively hyperbolic group. We show that each relatively quasiconvex subgroup is itself relatively hyperbolic, and that the intersection of two relatively quasiconvex subgroups is again relatively quasiconvex. In the finitely generated case, we prove that every undistorted subgroup is relatively quasiconvex, and we compute the distortion of a finitely generated relatively quasiconvex subgroup.
In this paper we generalize Kingmans sub-additive ergodic theorem to a large class of infinite countable discrete amenable group actions.
187 - Michel L. Lapidus , 2014
The theory of zeta functions of fractal strings has been initiated by the first author in the early 1990s, and developed jointly with his collaborators during almost two decades of intensive research in numerous articles and several monographs. In 2009, the same author introduced a new class of zeta functions, called `distance zeta functions, which since then, has enabled us to extend the existing theory of zeta functions of fractal strings and sprays to arbitrary bounded (fractal) sets in Euclidean spaces of any dimension. A natural and closely related tool for the study of distance zeta functions is the class of tube zeta functions, defined using the tube function of a fractal set. These three classes of zeta functions, under the name of fractal zeta functions, exhibit deep connections with Minkowski contents and upper box dimensions, as well as, more generally, with the complex dimensions of fractal sets. Further extensions include zeta functions of relative fractal drums, the box dimension of which can assume negative values, including minus infinity. We also survey some results concerning the existence of the meromorphic extensions of the spectral zeta functions of fractal drums, based in an essential way on earlier results of the first author on the spectral (or eigenvalue) asymptotics of fractal drums. It follows from these results that the associated spectral zeta function has a (nontrivial) meromorphic extension, and we use some of our results about fractal zeta functions to show the new fact according to which the upper bound obtained for the corresponding abscissa of meromorphic convergence is optimal. Finally, we conclude this survey article by proposing several open problems and directions for future research in this area.
For a large class of irreducible shift spaces $XsubsettA^{Z^d}$, with $tA$ a finite alphabet, and for absolutely summable potentials $Phi$, we prove that equilibrium measures for $Phi$ are weak Gibbs measures. In particular, for $d=1$, the result holds for irreducible sofic shifts.
We describe a method, based on hard contact topology, of showing the existence of semi-infinite trajectories of contact Hamiltonian flows which start on one Legendrian submanifold and asymptotically converge to another Legendrian submanifold. We discuss a mathematical model of non-equilibrium thermodynamics where such trajectories play a role of relaxation processes, and illustrate our results in the case of the Glauber dynamics for the mean field Ising model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا