No Arabic abstract
Applying the seminal work of Bose in 1924 on what was later known as Bose-Einstein statistics, Einstein predicted in 1925 that at sufficiently low temperatures, a macroscopic fraction of constituents of a gas of bosons will drop down to the lowest available energy state, forming a `giant molecule or a Bose-Einstein condensate (BEC), described by a `macroscopic wavefunction. In this article we show that when the BEC of ultralight bosons extends over cosmological length scales, it can potentially explain the origins of both dark matter and dark energy. We speculate on the nature of these bosons.
We show that Dark Matter consisting of bosons of mass of about 1eV or less has critical temperature exceeding the temperature of the universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant which may account for the correct dark energy content of our universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our universe.
We review analytical solutions of the Einstein equations which are expressed in terms of elementary functions and describe Friedmann-Lema^itre-Robertson-Walker universes sourced by multiple (real or effective) perfect fluids with constant equations of state. Effective fluids include spatial curvature, the cosmological constant, and scalar fields. We provide a description with unified notation, explicit and parametric forms of the solutions, and relations between different expressions present in the literature. Interesting solutions from a modern point of view include interacting fluids and scalar fields. Old solutions, integrability conditions, and solution methods keep being rediscovered, which motivates a review with modern eyes.
In a very recent paper [1], we have proposed a novel $4$-dimensional gravitational theory with two dynamical degrees of freedom, which serves as a consistent realization of $Dto4$ Einstein-Gauss-Bonnet gravity with the rescaled Gauss-Bonnet coupling constant $tilde{alpha}$. This has been made possible by breaking a part of diffeomorphism invariance, and thus is consistent with the Lovelock theorem. In the present paper, we study cosmological implications of the theory in the presence of a perfect fluid and clarify the similarities and differences between the results obtained from the consistent $4$-dimensional theory and those from the previously considered, naive (and inconsistent) $Drightarrow 4$ limit. Studying the linear perturbations, we explicitly show that the theory only has tensorial gravitational degrees of freedom (besides the matter degree) and that for $tilde{alpha}>0$ and $dot{H}<0$, perturbations are free of any pathologies so that we can implement the setup to construct early and/or late time cosmological models. Interestingly, a $k^4$ term appears in the dispersion relation of tensor modes which plays significant roles at small scales and makes the theory different than not only general relativity but also many other modified gravity theories as well as the naive (and inconsistent) $Dto 4$ limit. Taking into account the $k^4$ term, the observational constraint on the propagation of gravitational waves yields the bound $tilde{alpha} lesssim (10,{rm meV})^{-2}$. This is the first bound on the only parameter (besides the Newtons constant and the choice of a constraint that stems from a temporal gauge fixing) in the consistent theory of $Dto 4$ Einstein-Gauss-Bonnet gravity.
Lectures by the author at the 1986 Cargese summer school modestly corrected and uploaded for greater accessibility. Some of the authors views on the quantum mechanics of cosmology have changed from those presented here but may still be of historical interest. The material on the Born-Oppenheimer approximation for solving the Wheeler-DeWitt equation and the work on the classical geometry limit and the approximation of quantum field theory in curved spacetime are still of interest and of use.
The universal character of the gravitational interaction provided by the equivalence principle motivates a geometrical description of gravity. The standard formulation of General Relativity `a la Einstein attributes gravity to the spacetime curvature, to which we have grown accustomed. However, this perception has masked the fact that two alternative, though equivalent, formulations of General Relativity in flat spacetimes exist, where gravity can be fully ascribed either to torsion or to non-metricity. The latter allows a simpler geometrical formulation of General Relativity that is oblivious to the affine spacetime structure. Generalisations along this line permit to generate teleparallel and symmetric teleparallel theories of gravity with exceptional properties. In this work we explore modified gravity theories based on non-linear extensions of the non-metricity scalar. After presenting some general properties and briefly studying some interesting background cosmologies (including accelerating solutions with relevance for inflation and dark energy), we analyse the behaviour of the cosmological perturbations. Tensor perturbations feature a re-scaling of the corresponding Newtons constant, while vector perturbations do not contribute in the absence of vector sources. In the scalar sector we find two additional propagating modes, hinting that $f(Q)$ theories introduce, at least, two additional degrees of freedom. These scalar modes disappear around maximally symmetric backgrounds because of the appearance of an accidental residual gauge symmetry corresponding to a restricted diffeomorphism. We finally discuss the potential strong coupling problems of these maximally symmetric backgrounds caused by the discontinuity in the number of propagating modes.