Do you want to publish a course? Click here

Cosmology in $f(Q)$ geometry

124   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The universal character of the gravitational interaction provided by the equivalence principle motivates a geometrical description of gravity. The standard formulation of General Relativity `a la Einstein attributes gravity to the spacetime curvature, to which we have grown accustomed. However, this perception has masked the fact that two alternative, though equivalent, formulations of General Relativity in flat spacetimes exist, where gravity can be fully ascribed either to torsion or to non-metricity. The latter allows a simpler geometrical formulation of General Relativity that is oblivious to the affine spacetime structure. Generalisations along this line permit to generate teleparallel and symmetric teleparallel theories of gravity with exceptional properties. In this work we explore modified gravity theories based on non-linear extensions of the non-metricity scalar. After presenting some general properties and briefly studying some interesting background cosmologies (including accelerating solutions with relevance for inflation and dark energy), we analyse the behaviour of the cosmological perturbations. Tensor perturbations feature a re-scaling of the corresponding Newtons constant, while vector perturbations do not contribute in the absence of vector sources. In the scalar sector we find two additional propagating modes, hinting that $f(Q)$ theories introduce, at least, two additional degrees of freedom. These scalar modes disappear around maximally symmetric backgrounds because of the appearance of an accidental residual gauge symmetry corresponding to a restricted diffeomorphism. We finally discuss the potential strong coupling problems of these maximally symmetric backgrounds caused by the discontinuity in the number of propagating modes.



rate research

Read More

Gravity is attributed to the spacetime curvature in classical General Relativity (GR). But, other equivalent formulation or representations of GR, such as torsion or non-metricity have altered the perception. We consider the Weyl-type $f(Q, T)$ gravity, where $Q$ represents the non-metricity and $T$ is the trace of energy momentum temsor, in which the vector field $omega_{mu}$ determines the non-metricity $Q_{mu u alpha}$ of the spacetime. In this work, we employ the well-motivated $f(Q, T)= alpha Q+ frac{beta}{6k^{2}} T$, where $alpha$ and $beta$ are the model parameters. Furthermore, we assume that the universe is dominated by the pressure-free matter, i.e. the case of dust ($p=0$). We obtain the solution of field equations similar to a power-law in Hubble parameter $H(z)$. We investigate the cosmological implications of the model by constraining the model parameter $alpha$ and $beta$ using the recent 57 points Hubble data and 1048 points Pantheon supernovae data. To study various dark energy models, we use statefinder analysis to address the current cosmic acceleration. We also observe the $Om$ diagnostic describing various phases of the universe. Finally, it is seen that the solution which mimics the power-law fits well with the Pantheon data better than the Hubble data.
The $f(T,T_G)$ class of gravitational modification, based on the quadratic torsion scalar $T$, as well as on the new quartic torsion scalar $T_G$ which is the teleparallel equivalent of the Gauss-Bonnet term, is a novel theory, different from both $f(T)$ and $f(R,G)$ ones. We perform a detailed dynamical analysis of a spatially flat universe governed by the simplest non-trivial model of $f(T,T_G)$ gravity which does not introduce a new mass scale. We find that the universe can result in dark-energy dominated, quintessence-like, cosmological-constant-like or phantom-like solutions, according to the parameter choices. Additionally, it may result to a dark energy - dark matter scaling solution, and thus it can alleviate the coincidence problem. Finally, the analysis at infinity reveals that the universe may exhibit future, past, or intermediate singularities depending on the parameters.
$f(Q,T)$ gravity is a novel extension of the symmetric teleparallel gravity where the Lagrangian $L$ is represented through an arbitrary function of the nonmetricity $Q$ and the trace of the energy-momentum tensor $T$ cite{fqt}. In this work, we have constrained a widely used $f(Q,T)$ gravity model of the form $f(Q,T) = Q^{n+1} + m T$ from the primordial abundances of the light elements to understand its viability in Cosmology. We report that the $f(Q,T)$ gravity model can elegantly explain the observed abundances of Helium and Deuterium while the Lithium problem persists. From the constraint on the expansion factor in the range $0.9425 lesssim Z lesssim1.1525$, we report strict constraints on the parameters $m$ and $n$ in the range $-1.13 lesssim n lesssim -1.08$ and $-5.86 lesssim m lesssim12.52$ respectively.
We investigate the complete universe evolution in the framework of $f(T)$ cosmology. We first study the requirements at the kinematic level and we introduce a simple scale factor with the necessary features. Performing a detailed analysis of the phase portrait we show that the universe begins in the infinite past from a phase where the scale factor goes to zero but the Hubble parameter goes to a constant, and its derivative to zero. Since these features resemble those of the Pseudo-Rip fate but in a reverted way, we call this initial phase as Pseudo-Bang. Then the universe evolves in a first inflationary phase, a cosmological turnaround and a bounce, after which we have a second inflationary regime with a successful exit. Subsequently we obtain the standard thermal history and the sequence of radiation, matter and late-time acceleration epochs, showing that the universe will result in an everlasting Pseudo-Rip phase. Finally, taking advantage of the fact that the field equations of $f(T)$ gravity are of second order, and therefore the corresponding autonomous dynamical system is one dimensional, we incorporate the aforementioned kinematic features and we reconstruct the specific $f(T)$ form that can dynamically generate the Pseudo-Bang cosmological scenario. Lastly, we examine the evolution of the primordial fluctuations showing that they are initially sub-horizon, and we show that the total fluid does not exhibit any singular behaviour at the phantom crossing points, while the torsional fluid experiences them as Type II singular phases.
In this work by using a numerical analysis, we investigate in a quantitative way the late-time dynamics of scalar coupled $f(R,mathcal{G})$ gravity. Particularly, we consider a Gauss-Bonnet term coupled to the scalar field coupling function $xi(phi)$, and we study three types of models, one with $f(R)$ terms that are known to provide a viable late-time phenomenology, and two Einstein-Gauss-Bonnet types of models. Our aim is to write the Friedmann equation in terms of appropriate statefinder quantities frequently used in the literature, and we numerically solve it by using physically motivated initial conditions. In the case that $f(R)$ gravity terms are present, the contribution of the Gauss-Bonnet related terms is minor, as we actually expected. This result is robust against changes in the initial conditions of the scalar field, and the reason is the dominating parts of the $f(R)$ gravity sector at late times. In the Einstein-Gauss-Bonnet type of models, we examine two distinct scenarios, firstly by choosing freely the scalar potential and the scalar Gauss-Bonnet coupling $xi(phi)$, in which case the resulting phenomenology is compatible with the latest Planck data and mimics the $Lambda$-Cold-Dark-Matter model. In the second case, since there is no fundamental particle physics reason for the graviton to change its mass, we assume that primordially the tensor perturbations propagate with the speed equal to that of lights, and thus this constraint restricts the functional form of the scalar coupling function $xi(phi)$, which must satisfy the differential equation $ddot{xi}=Hdot{xi}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا