Do you want to publish a course? Click here

Cosmology and gravitational waves in consistent $Dto 4$ Einstein-Gauss-Bonnet gravity

109   0   0.0 ( 0 )
 Added by Katsuki Aoki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a very recent paper [1], we have proposed a novel $4$-dimensional gravitational theory with two dynamical degrees of freedom, which serves as a consistent realization of $Dto4$ Einstein-Gauss-Bonnet gravity with the rescaled Gauss-Bonnet coupling constant $tilde{alpha}$. This has been made possible by breaking a part of diffeomorphism invariance, and thus is consistent with the Lovelock theorem. In the present paper, we study cosmological implications of the theory in the presence of a perfect fluid and clarify the similarities and differences between the results obtained from the consistent $4$-dimensional theory and those from the previously considered, naive (and inconsistent) $Drightarrow 4$ limit. Studying the linear perturbations, we explicitly show that the theory only has tensorial gravitational degrees of freedom (besides the matter degree) and that for $tilde{alpha}>0$ and $dot{H}<0$, perturbations are free of any pathologies so that we can implement the setup to construct early and/or late time cosmological models. Interestingly, a $k^4$ term appears in the dispersion relation of tensor modes which plays significant roles at small scales and makes the theory different than not only general relativity but also many other modified gravity theories as well as the naive (and inconsistent) $Dto 4$ limit. Taking into account the $k^4$ term, the observational constraint on the propagation of gravitational waves yields the bound $tilde{alpha} lesssim (10,{rm meV})^{-2}$. This is the first bound on the only parameter (besides the Newtons constant and the choice of a constraint that stems from a temporal gauge fixing) in the consistent theory of $Dto 4$ Einstein-Gauss-Bonnet gravity.



rate research

Read More

We study the slow-roll single field inflation in the context of the consistent $Dto4$ Einstein-Gauss-Bonnet gravity that was recently proposed in cite{Aoki:2020lig}. In addition to the standard attractor regime, we find a new attractor regime which we call the Gauss-Bonnet attractor as the dominant contribution comes from the Gauss-Bonnet term. Around this attractor solution, we find power spectra and spectral tilts for the curvature perturbations and gravitational waves (GWs) and also a model-independent consistency relation among observable quantities. The Gauss-Bonnet term provides a nonlinear $k^4$ term to the GWs dispersion relation which has the same order as the standard linear $k^2$ term at the time of horizon crossing around the Gauss-Bonnet attractor. The Gauss-Bonnet attractor regime thus provides a new scenario for the primordial GWs which can be tested by observations. Finally, we study non-Gaussianity of GWs in this model and estimate the nonlinear parameters $f^{s_1s_2s_3}_{rm NL,;sq}$ and $f^{s_1s_2s_3}_{rm NL,;eq}$ by fitting the computed GWs bispectra with the local-type and equilateral-type templates respectively at the squeezed limit and at the equilateral shape. For helicities $(+++)$ and $( -- )$, $f^{s_1s_2s_3}_{rm NL,;sq}$ is larger while $f^{s_1s_2s_3}_{rm NL,;eq}$ is larger for helicities $(++-)$ and $(--+)$.
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (GR) minimally coupled to a massless scalar field. We first show results from the weak EdGB coupling limit, where we obtain solutions that smoothly approach those of the Einstein-Klein-Gordon system of GR. Here, in the strong field case, though our code does not utilize horizon penetrating coordinates, we nevertheless find tentative evidence that approaching black hole formation the EdGB modifications cause the growth of scalar field hair, consistent with known static black hole solutions in EdGB gravity. For the strong EdGB coupling regime, in a companion paper we first showed results that even in the weak field (i.e. far from black hole formation), the EdGB equations are of mixed type: evolution of the initially hyperbolic system of partial differential equations lead to formation of a region where their character changes to elliptic. Here, we present more details about this regime. In particular, we show that an effective energy density based on the Misner-Sharp mass is negative near these elliptic regions, and similarly the null convergence condition is violated then.
We investigate the $Drightarrow 4$ limit of the $D$-dimensional Einstein-Gauss-Bonnet gravity, where the limit is taken with $tilde{alpha}=(D-4), alpha$ kept fixed and $alpha$ is the original Gauss-Bonnet coupling. Using the ADM decomposition in $D$ dimensions, we clarify that the limit is rather subtle and ambiguous (if not ill-defined) and depends on the way how to regularize the Hamiltonian or/and the equations of motion. To find a consistent theory in $4$ dimensions that is different from general relativity, the regularization needs to either break (a part of) the diffeomorphism invariance or lead to an extra degree of freedom, in agreement with the Lovelock theorem. We then propose a consistent theory of $Drightarrow 4$ Einstein-Gauss-Bonnet gravity with two dynamical degrees of freedom by breaking the temporal diffeomorphism invariance and argue that, under a number of reasonable assumptions, the theory is unique up to a choice of a constraint that stems from a temporal gauge condition.
Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modelling of the expected signals in extensions of General Relativity. In this paper we model the gravitational wave emission of inspiraling binaries in scalar Gauss-Bonnet gravity theories. Going beyond the weak-coupling approximation, we derive the gravitational waveform to first post-Newtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We quantify the effect of these terms and provide ready-to-implement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasi-circular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from General Relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity.
101 - Jia-Xi Feng , Bao-Min Gu , 2020
Regularized Einstein-Gauss-Bonnet (EGB) theory of gravity in four dimensions is a new attempt to include nontrivial contributions of Gauss-Bonnet term. In this paper, we make a detailed analysis on possible constraints of the model parameters of the theory from recent cosmological observations, and some theoretical constraints as well. Our results show that the theory with vanishing bare cosmological constant, $Lambda_0$, is ruled out by the current observational value of $w_{de}$, and the observations of GW170817 and GRB 170817A as well. For nonvanishing bare cosmological constant, instead, our results show that the current observation of the speed of GWs measured by GW170817 and GRB 170817A would place a constraints on $tilde{alpha}$, a dimensionless parameter of the theory, as $-7.78times10^{-16}le tilde{alpha} leq 3.33times10^{-15}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا