Do you want to publish a course? Click here

Surface and bulk superconductivity at ambient pressure in the Weyl semimetal TaP

229   0   0.0 ( 0 )
 Added by Maarten van Delft
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The motivation to search for signatures of superconductivity in Weyl semi-metals and other topological phases lies in their potential for hosting exotic phenomena such as nonzero-momentum pairing or the Majorana fermion, a viable candidate for the ultimate realization of a scalable quantum computer. Until now, however, all known reports of superconductivity in Weyl semimetals have arisen through surface contact with a sharp tip, focused ion-beam surface treatment or the application of high pressures. Here, we demonstrate the observation of superconductivity in single crystals, even an as-grown crystal, of the Weyl semi-metal tantalum phosphide (TaP), at ambient pressure. A superconducting transition temperature, $Tc$, varying between 1.7 and 5.3 K, is observed in different samples, both as-grown and microscopic samples processed with focused ion beam (FIB) etching. Our data show that the superconductivity present in the as-grown crystal is inhomogeneous yet exists in the bulk. For samples fabricated with FIB, we observe, in addition to the bulk superconductivity, a second superconducting state that resides on the sample surface. Through measurements of the characteristic fields as a function of temperature and angle, we are able to confirm the dimensionality of the two distinct superconducting phases.



rate research

Read More

83 - Ying Xing , Zhibin Shao , Jun Ge 2018
The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically nontrivial and host exotic Majorana modes. The layered material TaIrTe4 is a newly predicted time-reversal invariant type II Weyl semimetal with minimum number of Weyl points. Here, we report the discovery of surface superconductivity in Weyl semimetal TaIrTe4. Our scanning tunneling microscopy/spectroscopy (STM/S) visualizes Fermi arc surface states of TaIrTe4 that are consistent with the previous angle-resolved photoemission spectroscopy (ARPES) results. By a systematic study based on STS at ultralow temperature, we observe uniform superconducting gaps on the sample surface. The superconductivity is further confirmed by electrical transport measurements at ultralow temperature, with an onset transition temperature (Tc) up to 1.54 K being observed. The normalized upper critical field h*(T/Tc) behavior and the stability of the superconductivity against the ferromagnet indicate that the discovered superconductivity is unconventional with the p-wave pairing. The systematic STS, thickness and angular dependent transport measurements reveal that the detected superconductivity is quasi-one-dimensional (quasi-1D) and occurs in the surface states. The discovery of the surface superconductivity in TaIrTe4 provides a new novel platform to explore topological superconductivity and Majorana modes.
A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, the particles that remained elusive for more than 80 years since their theoretical discovery. The Weyl semimetals exhibit unique transport and magneto-transport properties and remarkably high surface spin polarization. Here we show that a unique mesoscopic superconducting phase with a critical temperature up to 7 K can be realized by forming metallic point contacts with silver (Ag) on single crystals of TaAs, while neither Ag nor TaAs are superconductors. The Andreev reflection spectra obtained from such point contacts are fitted well within a modified Blonder-Tinkham-Klapwijk (BTK) model with a superconducting energy gap up to 1.2 meV. The analysis within this model also reveals high transport spin polarization up to 60% indicating a spin polarized supercurrent flowing through the point contacts on TaAs. Such point contacts also show a large anisotropic magnetoresistance (AMR) originating from the spin polarized current. Therefore, apart from the discovery of a novel mesoscopic superconducting phase and its coexistence with a large spin polarization, our results also show that the point contacts on Weyl semimetals are potentially important for applications in spintronics.
The Weyl semimetal MoTe$_2$ offers a rare opportunity to study the interplay between Weyl physics and superconductivity. Recent studies have found that Se substitution can boost the superconductivity up to 1.5K, but suppress the Td structure phase that is essential for the emergence of Weyl state. A microscopic understanding of possible coexistence of enhanced superconductivity and the Td phase has not been established so far. Here, we use scanning tunneling microscopy (STM) to study a optimally doped new superconductor MoTe$_{1.85}$Se$_{0.15}$ with bulk Tc ~ 1.5K. By means of quasiparticle interference imaging, we identify the existence of low temperature Td phase with broken inversion symmetry where superconductivity globally coexists. Consistently, we find that the superconducting coherence length, extracted from both the upper critical field and the decay of density of states near a vortex, is much larger than the characteristic length scale of existing dopant derived chemical disorder. Our findings of robust superconductivity arising from a Weyl semimetal normal phase in MoTe$_{1.85}$Se$_{0.15}$, makes it a promising candidate for realizing topological superconductivity.
210 - Cuiying Pei , Wujun Shi , Yi Zhao 2021
A search for the single material system that simultaneously exhibits topological phase and intrinsic superconductivity has been largely limited, although such a system is far more favorable especially for the quantum device applications. Except artificially engineered topological superconductivity in heterostructure systems, another alternative is to have superconductivity arising from the topological materials by pressure or other clean technology. Here, based on first-principles calculations, we first show that quasi-one-dimensional compound (NbSe4)2I represents a rare example of a chiral Weyl semimetal in which the set of symmetry-related Weyl points (WPs) exhibit the same chiral charge at a certain energy. The net chiral charge (NCC) of the below Fermi level EF (or a certain energy) can be tuned by pressure. In addition, a partial disorder induced by pressure accompanied with superconductivity emerges. Although amorphization of the iodine sub-lattice under high pressure, the one-dimensional NbSe4 chains in (NbSe4)2I remain intact and provide a superconducting channel in one dimension. Our combined theoretical and experimental research provide critical insight into a new phase of the one-dimensional system, in which distinctive phase transitions and correlated topological states emerge upon compression.
Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands linearly disperse around pairs of nodes, the Weyl points, of fixed (left or right) chirality. The recent discovery of WSM materials triggered an experimental search for the exotic quantum phenomenon known as the chiral anomaly. Via the chiral anomaly nonorthogonal electric and magnetic fields induce a chiral density imbalance that results in an unconventional negative longitudinal magnetoresistance, the chiral magnetic effect. Recent theoretical work suggests that this effect does not require well-defined Weyl nodes. Experimentally however, it remains an open question to what extent it survives when chirality is not well-defined, for example when the Fermi energy is far away from the Weyl points. Here, we establish the detailed Fermi surface topology of the recently identified WSM TaP via a combination of angle-resolved quantum oscillation spectra and band structure calculations. The Fermi surface forms spin-polarized banana-shaped electron and hole pockets attached to pairs of Weyl points. Although the chiral anomaly is therefore ill-defined, we observe a large negative magnetoresistance (NMR) appearing for collinear magnetic and electric fields as observed in other WSMs. In addition, we show experimental signatures indicating that such longitudinal magnetoresistance measurements can be affected by an inhomogeneous current distribution inside the sample in a magnetic field. Our results provide a clear framework how to detect the chiral magnetic effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا