Do you want to publish a course? Click here

Inverse Compton Emission from Relativistic Jets in Binary Systems

117   0   0.0 ( 0 )
 Added by Khangulyan Dmitry
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The gamma-ray emission detected from several microquasars can be produced by relativistic electrons emitting through inverse Compton scattering. In particular, the GeV emission detected from Cygnus X-3, and its orbital phase dependence, strongly suggest that the emitting electrons are accelerated in a relativistic jet, and that the optical companion provides the dominant target. Here, we study the effects related to particle transport in the framework of the relativistic jet scenario. We find that even in the most compact binary systems, with parameters similar to Cygnus X-3, particle transport can have a substantial influence on the GeV lightcurve unless the jet is slow, $beta < 0.7$. In more extended binary systems, strong impact of particle transport is nearly unavoidable. Thus, even for a very compact system such as Cygnus X-3, particle transport significantly affects the ability of one-zone models to infer the properties of the gamma-ray production site based on the shape on the GeV lightcurve. We conclude that a detailed study of the gamma-ray spectrum can further constrain the structure and other properties of the gamma-ray emitter in Cygnus X-3, although such a study should account for gamma-gamma attenuation, since it may strongly affect the spectrum above $5rm,GeV$.

rate research

Read More

142 - Ryo Yamazaki , Abraham Loeb 2015
Shocks around clusters of galaxies accelerate electrons which upscatter the Cosmic Microwave Background photons to higher-energies. We use an analytical model to calculate this inverse Compton (IC) emission, taking into account the effects of additional energy losses via synchrotron and Coulomb scattering. We find that the surface brightness of the optical IC emission increases with redshift and halo mass. The IC emission surface brightness, 32--34~mag~arcsec$^{-2}$, for massive clusters is potentially detectable by the newly developed Dragonfly Telephoto Array.
Millisecond pulsars are very likely the main source of gamma-ray emission from globular clusters. However, the relative contributions of two separate emission processes-curvature radiation from millisecond pulsar magnetospheres vs. inverse Compton emission from relativistic pairs launched into the globular cluster environment by millisecond pulsars-has long been unclear. To address this, we search for evidence of inverse Compton emission in 8-year Fermi-LAT data from the directions of 157 Milky Way globular clusters. We find a mildly statistically significant (3.8$sigma$) correlation between the measured globular cluster gamma-ray luminosities and their photon field energy densities. However, this may also be explained by a hidden correlation between the photon field densities and the stellar encounter rates of globular clusters. Analysed in toto, we demonstrate that the gamma-ray emission of globular clusters can be resolved spectrally into two components: i) an exponentially cut-off power law and ii) a pure power law. The latter component-which we uncover at a significance of 8.2$sigma$-is most naturally interpreted as inverse Compton emission by cosmic-ray electrons and positrons injected by millisecond pulsars. We find the luminosity of this inverse Compton component is comparable to, or slightly smaller than, the luminosity of the curved component, suggesting the fraction of millisecond pulsar spin-down luminosity into relativistic leptons is similar to the fraction of the spin-down luminosity into prompt magnetospheric radiation.
Analyses of Fermi Gamma-Ray Space Telescope data have revealed a source of excess diffuse gamma rays towards the Galactic center that extends up to roughly $pm$20 degrees in latitude. The leading theory postulates that this GeV excess is the aggregate emission from a large number of faint millisecond pulsars (MSPs). The electrons and positrons ($e^pm$) injected by this population could produce detectable inverse-Compton (IC) emissions by up-scattering ambient photons to gamma-ray energies. In this work, we calculate such IC emissions using GALPROP. A triaxial three-dimensional model of the bulge stars obtained from a fit to infrared data is used as a tracer of the putative MSP population. This model is compared against one in which the MSPs are spatially distributed as a Navarro-Frenk-White squared profile. We show that the resulting spectra for both models are indistinguishable, but that their spatial morphologies have salient recognizable features. The IC component above $sim$TeV energies carries information on the spatial morphology of the injected $e^pm$. Such differences could potentially be used by future high-energy gamma-ray detectors such as the Cherenkov Telescope Array to provide a viable multiwavelength handle for the MSP origin of the GeV excess.
Relativistic jets launched by rotating black holes are powerful emitters of non-thermal radiation. Extraction of the rotational energy via electromagnetic stresses produces magnetically-dominated jets, which may become turbulent. Studies of magnetically-dominated plasma turbulence from first principles show that most of the accelerated particles have small pitch angles, i.e. the particle velocity is nearly aligned with the local magnetic field. We examine synchrotron-self-Compton radiation from anisotropic particles in the fast cooling regime. The small pitch angles reduce the synchrotron cooling rate and promote the role of inverse Compton (IC) cooling, which can occur in two different regimes. In the Thomson regime, both synchrotron and IC components have soft spectra, $ u F_ upropto u^{1/2}$. In the Klein-Nishina regime, synchrotron radiation has a hard spectrum, typically $ u F_ upropto u$, over a broad range of frequencies. Our results have implications for the modelling of BL Lacs and Gamma-Ray Bursts (GRBs). BL Lacs produce soft synchrotron and IC spectra, as expected when Klein-Nishina effects are minor. The observed synchrotron and IC luminosities are typically comparable, which indicates a moderate anisotropy with pitch angles $thetagtrsim0.1$. Rare orphan gamma-ray flares may be produced when $thetall0.1$. The hard spectra of GRBs may be consistent with synchrotron radiation when the emitting particles are IC cooling in the Klein-Nishina regime, as expected for pitch angles $thetasim0.1$. Blazar and GRB spectra can be explained by turbulent jets with a similar electron plasma magnetisation parameter, $sigma_{rm e}sim10^4$, which for electron-proton plasmas corresponds to an overall magnetisation $sigma=(m_{rm e}/m_{rm p})sigma_{rm e}sim10$.
156 - M. Breuhaus , J. Hahn , C. Romoli 2020
It is generally held that >100 TeV emission from astrophysical objects unambiguously demonstrates the presence of PeV protons or nuclei, due to the unavoidable Klein-Nishina suppression of inverse Compton emission from electrons. However, in the presence of inverse Compton dominated cooling, hard high-energy electron spectra are possible. We show that the environmental requirements for such spectra can naturally be met in spiral arms, and in particular in regions of enhanced star formation activity, the natural locations for the most promising electron accelerators: powerful young pulsars. Our scenario suggests a population of hard ultra-high energy sources is likely to be revealed in future searches, and may also provide a natural explanation for the 100 TeV sources recently reported by HAWC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا