No Arabic abstract
We present the first fully general relativistic dynamical simulations of Abelian Higgs cosmic strings using 3+1D numerical relativity. Focusing on cosmic string loops, we show that they collapse due to their tension and can either (i) unwind and disperse or (ii) form a black hole, depending on their tension $Gmu$ and initial radius. We show that these results can be predicted using an approximate formula derived using the hoop conjecture, and argue that it is independent of field interactions. We extract the gravitational waveform produced in the black hole formation case and show that it is dominated by the $l=2$ and $m=0$ mode. We also compute the total gravitational wave energy emitted during such a collapse, being $0.5pm 0.2~ %$ of the initial total cosmic string loop mass, for a string tension of $Gmu=1.6times 10^{-2}$ and radius $R=100~M_{pl}^{-1}$. We use our results to put a bound on the production rate of planar cosmic strings loops as $N lesssim 10^{-2}~mathrm{Gpc}^{-3}~mathrm{yr}^{-1}$.
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.
We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior spacetime of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only $n=21$ terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essentially depends on the equation of state of the dense matter at the center of the star. The stability properties of the model are also analyzed in detail for a number of central equations of state, and it is shown that it is stable with respect to the radial adiabatic perturbations. The astrophysical analysis indicates that this solution can be used as a realistic model for static general relativistic high density objects, like neutron stars.
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detection, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
We study how a strong gravity affects the equation of state of matters. For this purpose, we employ a canonical ensemble of classical monoatomic ideal gas inside a box in a Rindler spacetime. The total energy decreases monotonically with the increase of the external gravity representing its attractiveness. It is however bounded below, which is different from that of the Newtonian gravity case. As for the entropy, it decreases with the external gravity in the Newtonian regime. However, in the presence of strong gravity or ultra-relativistic high temperature, the entropy increases with the gravity. This result can be a resolution of the negative entropy problem of the ideal gas in the Newtonian gravity. In the presence of strong gravity, the bottom of the box is very close to the event horizon of the Rindler spacetime mimicking a blackhole and the gas behaves as if it is on an effective two dimensional surface located at the bottom of the box. Investigating the equation of state in the strong gravity regime, the temperature of the system is found to be not a free parameter but to approach a fixed value proportional to the external gravity, which is reminiscent of the Unruh temperature.
In this paper we consider spherically symmetric general fluids with heat flux, motivated by causal thermodynamics, and give the appropriate set of conditions that define separating shells defining the divide between expansion and collapse. To do so we add the new requirement that heat flux and its evolution vanish at the separating surface. We extend previous works with a fully nonlinear analysis in the 1+3 splitting, and present gauge-invariant results. The definition of the separating surface is inspired by the conservation of the Misner-Sharp mass, and is obtained by generalizing the Tolman-Oppenheimer-Volkoff equilibrium and turnaround conditions. We emphasize the nonlocal character of these conditions as found in previous works and discuss connections to the phenomena of spacetime cracking and thermal peeling.