No Arabic abstract
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detection, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
A present challenge in testing general relativity (GR) with binary black hole gravitational wave detections is the inability to perform model-dependent tests due to the lack of merger waveforms in beyond-GR theories. In this study, we produce the first numerical relativity binary black hole gravitational waveform in Einstein dilaton Gauss-Bonnet (EDGB) gravity, a higher-curvature theory of gravity with motivations in string theory. We evolve a binary black hole system in order-reduced EDGB gravity, with parameters consistent with GW150914. We focus on the merger portion of the waveform, due to the presence of secular growth in the inspiral phase. We compute mismatches with the corresponding general relativity merger waveform, finding that from a post-inspiral-only analysis, we can constrain the EDGB lengthscale to be $sqrt{alpha_mathrm{GB}} lesssim 11$ km.
The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnants mass and spin, as determined from the low-frequency (inspiral) and high-frequency (post-inspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasi-normal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parameterized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a $90%$-confidence lower bound of $10^{13}$ km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.
We study how a strong gravity affects the equation of state of matters. For this purpose, we employ a canonical ensemble of classical monoatomic ideal gas inside a box in a Rindler spacetime. The total energy decreases monotonically with the increase of the external gravity representing its attractiveness. It is however bounded below, which is different from that of the Newtonian gravity case. As for the entropy, it decreases with the external gravity in the Newtonian regime. However, in the presence of strong gravity or ultra-relativistic high temperature, the entropy increases with the gravity. This result can be a resolution of the negative entropy problem of the ideal gas in the Newtonian gravity. In the presence of strong gravity, the bottom of the box is very close to the event horizon of the Rindler spacetime mimicking a blackhole and the gas behaves as if it is on an effective two dimensional surface located at the bottom of the box. Investigating the equation of state in the strong gravity regime, the temperature of the system is found to be not a free parameter but to approach a fixed value proportional to the external gravity, which is reminiscent of the Unruh temperature.
We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior spacetime of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only $n=21$ terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essentially depends on the equation of state of the dense matter at the center of the star. The stability properties of the model are also analyzed in detail for a number of central equations of state, and it is shown that it is stable with respect to the radial adiabatic perturbations. The astrophysical analysis indicates that this solution can be used as a realistic model for static general relativistic high density objects, like neutron stars.
We describe and present the first observational evidence that light propagating near a rotating black hole is twisted in phase and carries orbital angular momentum. The novel use of this physical observable as an additional tool for the previously known techniques of gravitational lensing allows us to directly measure, for the first time, the spin parameter of a black hole. With the additional information encoded in the orbital angular momentum, not only can we reveal the actual rotation of the compact object, but we can also use rotating black holes as probes to test General Relativity.