Do you want to publish a course? Click here

Separating expansion and collapse in general fluid models with heat flux

130   0   0.0 ( 0 )
 Added by Daniel Guariento
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we consider spherically symmetric general fluids with heat flux, motivated by causal thermodynamics, and give the appropriate set of conditions that define separating shells defining the divide between expansion and collapse. To do so we add the new requirement that heat flux and its evolution vanish at the separating surface. We extend previous works with a fully nonlinear analysis in the 1+3 splitting, and present gauge-invariant results. The definition of the separating surface is inspired by the conservation of the Misner-Sharp mass, and is obtained by generalizing the Tolman-Oppenheimer-Volkoff equilibrium and turnaround conditions. We emphasize the nonlocal character of these conditions as found in previous works and discuss connections to the phenomena of spacetime cracking and thermal peeling.



rate research

Read More

We present the first fully general relativistic dynamical simulations of Abelian Higgs cosmic strings using 3+1D numerical relativity. Focusing on cosmic string loops, we show that they collapse due to their tension and can either (i) unwind and disperse or (ii) form a black hole, depending on their tension $Gmu$ and initial radius. We show that these results can be predicted using an approximate formula derived using the hoop conjecture, and argue that it is independent of field interactions. We extract the gravitational waveform produced in the black hole formation case and show that it is dominated by the $l=2$ and $m=0$ mode. We also compute the total gravitational wave energy emitted during such a collapse, being $0.5pm 0.2~ %$ of the initial total cosmic string loop mass, for a string tension of $Gmu=1.6times 10^{-2}$ and radius $R=100~M_{pl}^{-1}$. We use our results to put a bound on the production rate of planar cosmic strings loops as $N lesssim 10^{-2}~mathrm{Gpc}^{-3}~mathrm{yr}^{-1}$.
We investigate the thermodynamics of FRW (Friedmann-Robertson-Walker) universe in the extended phase space. We generalize the unified first law with a cosmological constant $Lambda$ by using the Misner-Sharp energy. We treat the cosmological constant as the thermodynamic pressure of the system, and derive thermodynamic equation of state $P = P(V, T)$ for the FRW universe. To clarify our general result, we present two applications of this thermodynamic equation of state, including Joule-Thomson expansions and efficiency of the Carnot heat engines. These investigations lead to physical insights of the evolution of the universe in view of thermodynamics.
The accelerated expansion of the universe demands presence of an exotic matter, namely the dark energy. Though the cosmological constant fits this role very well, a scalar field minimally coupled to gravity, or quintessence, can also be considered as a viable alternative for the cosmological constant. We study $f(R)$ gravity models which can lead to an effective description of dark energy implemented by quintessence fields in Einstein gravity, using the Einstein frame-Jordan frame duality. For a family of viable quintessence models, the reconstruction of the $f(R)$ function in the Jordan frame consists of two parts. We first obtain a perturbative solution of $f(R)$ in the Jordan frame, applicable near the present epoch. Second, we obtain an asymptotic solution for $f(R)$, consistent with the late time limit of the Einstein frame if the quintessence field drives the universe. We show that for certain class of viable quintessence models, the Jordan frame universe grows to a maximum finite size, after which it begins to collapse back. Thus, there is a possibility that in the late time limit where the Einstein frame universe continues to expand, the Jordan frame universe collapses. The condition for this expansion-collapse duality is then generalized to time varying equations of state models, taking into account the presence of non-relativistic matter or any other component in the Einstein frame universe. This mapping between an expanding geometry and a collapsing geometry at the field equation level may have interesting potential implications on the growth of perturbations therein at late times.
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in ($beta-$) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.
We investigate Kantowski-Sachs models in Einstein-{ae}ther theory with a perfect fluid source using the singularity analysis to prove the integrability of the field equations and dynamical system tools to study the evolution. We find an inflationary source at early times, and an inflationary sink at late times, for a wide region in the parameter space. The results by A. A. Coley, G. Leon, P. Sandin and J. Latta (JCAP 12, 010, 2015), are then re-obtained as particular cases. Additionally, we select other values for the non-GR parameters which are consistent with current constraints, getting a very rich phenomenology. In particular, we find solutions with infinite shear, zero curvature, and infinite matter energy density in comparison with the Hubble scalar. We also have stiff-like future attractors, anisotropic late-time attractors, or both, in some special cases. Such results are developed analytically, and then verified by numerics. Finally, the physical interpretation of the new critical points is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا