Do you want to publish a course? Click here

Spillover Effects in Cluster Randomized Trials with Noncompliance

101   0   0.0 ( 0 )
 Added by Luke Keele
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Cluster randomized trials (CRTs) are popular in public health and in the social sciences to evaluate a new treatment or policy where the new policy is randomly allocated to clusters of units rather than individual units. CRTs often feature both noncompliance, when individuals within a cluster are not exposed to the intervention, and individuals within a cluster may influence each other through treatment spillovers where those who comply with the new policy may affect the outcomes of those who do not. Here, we study the identification of causal effects in CRTs when both noncompliance and treatment spillovers are present. We prove that the standard analysis of CRT data with noncompliance using instrumental variables does not identify the usual complier average causal effect when treatment spillovers are present. We extend this result and show that no analysis of CRT data can unbiasedly estimate local network causal effects. Finally, we develop bounds for these causal effects under the assumption that the treatment is not harmful compared to the control. We demonstrate these results with an empirical study of a deworming intervention in Kenya.



rate research

Read More

136 - Hyunseung Kang , Luke Keele 2018
Many policy evaluations occur in settings where treatment is randomized at the cluster level, and there is treatment noncompliance within each cluster. For example, villages might be assigned to treatment and control, but residents in each village may choose to comply or not with their assigned treatment status. When noncompliance is present, the instrumental variables framework can be used to identify and estimate causal effects. While a large literature exists on instrumental variables estimation methods, relatively little work has been focused on settings with clustered treatments. Here, we review extant methods for instrumental variable estimation in clustered designs and derive both the finite and asymptotic properties of these estimators. We prove that the properties of current estimators depend on unrealistic assumptions. We then develop a new IV estimation method for cluster randomized trials and study its formal properties. We prove that our IV estimator allows for possible treatment effect heterogeneity that is correlated with cluster size and is robust to low compliance rates within clusters. We evaluate these methods using simulations and apply them to data from a randomized intervention in India.
60 - Masayuki Sawada 2019
This study proposes a method to identify treatment effects without exclusion restrictions in randomized experiments with noncompliance. Exploiting a baseline survey commonly available in randomized experiments, I decompose the intention-to-treat effects conditional on the endogenous treatment status. I then identify these parameters to understand the effects of the assignment and treatment. The key assumption is that a baseline variable maintains rank orders similar to the control outcome. I also reveal that the change-in-changes strategy may work without repeated outcomes. Finally, I propose a new estimator that flexibly incorporates covariates and demonstrate its properties using two experimental studies.
In cluster randomized trials, patients are recruited after clusters are randomized, and the recruiters and patients may not be blinded to the assignment. This often leads to differential recruitment and systematic differences in baseline characteristics of the recruited patients between intervention and control arms, inducing post-randomization selection bias. We aim to rigorously define causal estimands in the presence of selection bias. We elucidate the conditions under which standard covariate adjustment methods can validly estimate these estimands. We further discuss the additional data and assumptions necessary for estimating causal effects when such conditions are not met. Adopting the principal stratification framework in causal inference, we clarify there are two average treatment effect (ATE) estimands in cluster randomized trials: one for the overall population and one for the recruited population. We derive the analytical formula of the two estimands in terms of principal-stratum-specific causal effects. Further, using simulation studies, we assess the empirical performance of the multivariable regression adjustment method under different data generating processes leading to selection bias. When treatment effects are heterogeneous across principal strata, the ATE on the overall population generally differs from the ATE on the recruited population. A naive intention-to-treat analysis of the recruited sample leads to biased estimates of both ATEs. In the presence of post-randomization selection and without additional data on the non-recruited subjects, the ATE on the recruited population is estimable only when the treatment effects are homogenous between principal strata, and the ATE on the overall population is generally not estimable. The extent to which covariate adjustment can remove selection bias depends on the degree of effect heterogeneity across principal strata.
Two-stage randomized experiments are becoming an increasingly popular experimental design for causal inference when the outcome of one unit may be affected by the treatment assignments of other units in the same cluster. In this paper, we provide a methodological framework for general tools of statistical inference and power analysis for two-stage randomized experiments. Under the randomization-based framework, we propose unbiased point estimators of direct and spillover effects, construct conservative variance estimators, develop hypothesis testing procedures, and derive sample size formulas. We also establish the equivalence relationships between the randomization-based and regression-based methods. We theoretically compare the two-stage randomized design with the completely randomized and cluster randomized designs, which represent two limiting designs. Finally, we conduct simulation studies to evaluate the empirical performance of our sample size formulas. For empirical illustration, the proposed methodology is applied to the analysis of the data from a field experiment on a job placement assistance program.
Instrumental variable methods are widely used in medical and social science research to draw causal conclusions when the treatment and outcome are confounded by unmeasured confounding variables. One important feature of such studies is that the instrumental variable is often applied at the cluster level, e.g., hospitals or physicians preference for a certain treatment where each hospital or physician naturally defines a cluster. This paper proposes to embed such observational instrumental variable data into a cluster-randomized encouragement experiment using statistical matching. Potential outcomes and causal assumptions underpinning the design are formalized and examined. Testing procedures for two commonly-used estimands, Fishers sharp null hypothesis and the pooled effect ratio, are extended to the current setting. We then introduce a novel cluster-heterogeneous proportional treatment effect model and the relevant estimand: the average cluster effect ratio. This new estimand is advantageous over the structural parameter in a constant proportional treatment effect model in that it allows treatment heterogeneity, and is advantageous over the pooled effect ratio estimand in that it is immune to Simpsons paradox. We develop an asymptotically valid randomization-based testing procedure for this new estimand based on solving a mixed integer quadratically-constrained optimization problem. The proposed design and inferential methods are applied to a study of the effect of using transesophageal echocardiography during CABG surgery on patients 30-day mortality rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا