Do you want to publish a course? Click here

Bridging preference-based instrumental variable studies and cluster-randomized encouragement experiments: study design, noncompliance, and average cluster effect ratio

74   0   0.0 ( 0 )
 Added by Bo Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Instrumental variable methods are widely used in medical and social science research to draw causal conclusions when the treatment and outcome are confounded by unmeasured confounding variables. One important feature of such studies is that the instrumental variable is often applied at the cluster level, e.g., hospitals or physicians preference for a certain treatment where each hospital or physician naturally defines a cluster. This paper proposes to embed such observational instrumental variable data into a cluster-randomized encouragement experiment using statistical matching. Potential outcomes and causal assumptions underpinning the design are formalized and examined. Testing procedures for two commonly-used estimands, Fishers sharp null hypothesis and the pooled effect ratio, are extended to the current setting. We then introduce a novel cluster-heterogeneous proportional treatment effect model and the relevant estimand: the average cluster effect ratio. This new estimand is advantageous over the structural parameter in a constant proportional treatment effect model in that it allows treatment heterogeneity, and is advantageous over the pooled effect ratio estimand in that it is immune to Simpsons paradox. We develop an asymptotically valid randomization-based testing procedure for this new estimand based on solving a mixed integer quadratically-constrained optimization problem. The proposed design and inferential methods are applied to a study of the effect of using transesophageal echocardiography during CABG surgery on patients 30-day mortality rate.

rate research

Read More

100 - Hyunseung Kang , Luke Keele 2018
Cluster randomized trials (CRTs) are popular in public health and in the social sciences to evaluate a new treatment or policy where the new policy is randomly allocated to clusters of units rather than individual units. CRTs often feature both noncompliance, when individuals within a cluster are not exposed to the intervention, and individuals within a cluster may influence each other through treatment spillovers where those who comply with the new policy may affect the outcomes of those who do not. Here, we study the identification of causal effects in CRTs when both noncompliance and treatment spillovers are present. We prove that the standard analysis of CRT data with noncompliance using instrumental variables does not identify the usual complier average causal effect when treatment spillovers are present. We extend this result and show that no analysis of CRT data can unbiasedly estimate local network causal effects. Finally, we develop bounds for these causal effects under the assumption that the treatment is not harmful compared to the control. We demonstrate these results with an empirical study of a deworming intervention in Kenya.
How to measure the incremental Return On Ad Spend (iROAS) is a fundamental problem for the online advertising industry. A standard modern tool is to run randomized geo experiments, where experimental units are non-overlapping ad-targetable geographical areas (Vaver & Koehler 2011). However, how to design a reliable and cost-effective geo experiment can be complicated, for example: 1) the number of geos is often small, 2) the response metric (e.g. revenue) across geos can be very heavy-tailed due to geo heterogeneity, and furthermore 3) the response metric can vary dramatically over time. To address these issues, we propose a robust nonparametric method for the design, called Trimmed Match Design (TMD), which extends the idea of Trimmed Match (Chen & Au 2019) and furthermore integrates the techniques of optimal subset pairing and sample splitting in a novel and systematic manner. Some simulation and real case studies are presented. We also point out a few open problems for future research.
In cluster randomized trials, patients are recruited after clusters are randomized, and the recruiters and patients may not be blinded to the assignment. This often leads to differential recruitment and systematic differences in baseline characteristics of the recruited patients between intervention and control arms, inducing post-randomization selection bias. We aim to rigorously define causal estimands in the presence of selection bias. We elucidate the conditions under which standard covariate adjustment methods can validly estimate these estimands. We further discuss the additional data and assumptions necessary for estimating causal effects when such conditions are not met. Adopting the principal stratification framework in causal inference, we clarify there are two average treatment effect (ATE) estimands in cluster randomized trials: one for the overall population and one for the recruited population. We derive the analytical formula of the two estimands in terms of principal-stratum-specific causal effects. Further, using simulation studies, we assess the empirical performance of the multivariable regression adjustment method under different data generating processes leading to selection bias. When treatment effects are heterogeneous across principal strata, the ATE on the overall population generally differs from the ATE on the recruited population. A naive intention-to-treat analysis of the recruited sample leads to biased estimates of both ATEs. In the presence of post-randomization selection and without additional data on the non-recruited subjects, the ATE on the recruited population is estimable only when the treatment effects are homogenous between principal strata, and the ATE on the overall population is generally not estimable. The extent to which covariate adjustment can remove selection bias depends on the degree of effect heterogeneity across principal strata.
The primary analysis of randomized screening trials for cancer typically adheres to the intention-to-screen principle, measuring cancer-specific mortality reductions between screening and control arms. These mortality reductions result from a combination of the screening regimen, screening technology and the effect of the early, screening-induced, treatment. This motivates addressing these different aspects separately. Here we are interested in the causal effect of early versus delayed treatments on cancer mortality among the screening-detectable subgroup, which under certain assumptions is estimable from conventional randomized screening trial using instrumental variable type methods. To define the causal effect of interest, we formulate a simplified structural multi-state model for screening trials, based on a hypothetical intervention trial where screening detected individuals would be randomized into early versus delayed treatments. The cancer-specific mortality reductions after screening detection are quantified by a cause-specific hazard ratio. For this, we propose two estimators, based on an estimating equation and a likelihood expression. The methods extend existing instrumental variable methods for time-to-event and competing risks outcomes to time-dependent intermediate variables. Using the multi-state model as the basis of a data generating mechanism, we investigate the performance of the new estimators through simulation studies. In addition, we illustrate the proposed method in the context of CT screening for lung cancer using the US National Lung Screening Trial (NLST) data.
136 - Hyunseung Kang , Luke Keele 2018
Many policy evaluations occur in settings where treatment is randomized at the cluster level, and there is treatment noncompliance within each cluster. For example, villages might be assigned to treatment and control, but residents in each village may choose to comply or not with their assigned treatment status. When noncompliance is present, the instrumental variables framework can be used to identify and estimate causal effects. While a large literature exists on instrumental variables estimation methods, relatively little work has been focused on settings with clustered treatments. Here, we review extant methods for instrumental variable estimation in clustered designs and derive both the finite and asymptotic properties of these estimators. We prove that the properties of current estimators depend on unrealistic assumptions. We then develop a new IV estimation method for cluster randomized trials and study its formal properties. We prove that our IV estimator allows for possible treatment effect heterogeneity that is correlated with cluster size and is robust to low compliance rates within clusters. We evaluate these methods using simulations and apply them to data from a randomized intervention in India.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا