Do you want to publish a course? Click here

Gate-Controlled Magnetoresistance of a Paramagnetic Insulator|Platinum Interface

60   0   0.0 ( 0 )
 Added by Lei Liang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an electric field-induced in-plane magnetoresistance of an atomically flat paramagnetic insulator|platinum (Pt) interface at low temperatures with an ionic liquid gate. Transport experiments as a function of applied magnetic field strength and direction obey the spin Hall magnetoresistance phenomenology with perpendicular magnetic anisotropy. Our results establish the utility of ionic gating as an alternative method to control spintronic devices without using ferromagnets.



rate research

Read More

127 - Z. Qiu , K. Ando , K. Uchida 2013
A platinum (Pt)/yttrium iron garnet (YIG) bilayer system with a well-controlled interface has been developed; spin mixing conductance at the Pt/YIG interface has been studied. Crystal perfection at the interface is experimentally demonstrated to contribute to large spin mixing conductance. The spin mixing conductance is obtained to be $1.3times10^{18} rm{m^{-2}}$ at the well-controlled Pt/YIG interface, which is close to a theoretical prediction.
Spin-momentum locking, a key property of the surface states of three-dimensional topological insulators (3DTIs), provides a new avenue for spintronics applications. One consequence of spin-momentum locking is the induction of surface spin accumulations due to applied electric fields. In this work, we investigate the extraction of such electrically-induced spins from their host TI material into adjoining conventional, hence topologically trivial, materials that are commonly used in electronics devices. We focus on effective Hamiltonians for bismuth-based 3DTI materials in the ${rm Bi}_2{rm Se}_3$ family, and numerically explore the geometries for extracting current-induced spins from a TI surface. In particular, we consider a device geometry in which a side pocket is attached to various faces of a 3DTI quantum wire and show that it is possible to create current-induced spin accumulations in these topologically trivial side pockets. We further study how such spin extraction depends on geometry and material parameters, and find that electron-hole degrees of freedom can be utilized to control the polarization of the extracted spins by an applied gate voltage.
The thermoelectric properties of the surface states in three-dimensional topological insulator nanowires are studied. The Seebeck coefficients $S_c$ and the dimensionless thermoelectrical figure of merit $ZT$ are obtained by using the tight-binding Hamiltonian combining with the nonequilibrium Greens function method. They are strongly dependent on the gate voltage and the longitudinal and perpendicular magnetic fields. By changing the gate voltage or magnetic fields, the values of $S_c$ and $ZT$ can be easily controlled. At the zero magnetic fields and zero gate voltage, or at the large perpendicular magnetic field and nonzero gate voltage, $ZT$ has the large value. Owing to the electron-hole symmetry, $S_c$ is an odd function of the Fermi energy while $ZT$ is an even function regardless of the magnetic fields. $S_c$ and $ZT$ show peaks when the quantized transmission coefficient jumps from one plateau to another. The highest peak appears while the Fermi energy is near the Dirac point. At the zero perpendicular magnetic field and zero gate voltage, the height of $n$th peak of $S_C$ is $frac{k_B}{e}texttt{ln}2/(|n|+1/2)$ and $frac{k_B}{e}texttt{ln}2/|n|$ for the longitudinal magnetic flux $phi_{parallel} = 0 $ and $pi$, respectively. Finally, we also study the effect of disorder and find that $S_c$ and $ZT$ are robust against disorder. In particular, the large value of $ZT$ can survive even if at the strong disorder. These characteristics (that $ZT$ has the large value, is easily regulated, and is robust against the disorder) are very beneficial for the application of the thermoelectricity.
58 - Z. Nosan , P. Marki , N. Hauff 2019
The parametron, a resonator-based logic device, is a promising physical platform for emerging computational paradigms. When the parametron is subject to both parametric pumping and external driving, complex phenomena arise that can be harvested for applications. In this paper, we experimentally demonstrate deterministic phase switching of a parametron by applying frequency tuning pulses. To our surprise, we find different regimes of phase switching due to the interplay between a parametric pump and an external drive. We provide full modeling of our device with numerical simulations and find excellent agreement between model and measurements. Our result opens up new possibilities for fast and robust logic operations within large-scale parametron architectures.
We investigate the absorption of a spin current at a ferromagnetic-metal/Pt-oxide interface by measuring current-induced ferromagnetic resonance. The spin absorption was characterized by the magnetic damping of the heterostructure. We show that the magnetic damping of a Ni$_{81}$Fe$_{19}$ film is clearly enhanced by attaching Pt-oxide on the Ni$_{81}$Fe$_{19}$ film. The damping enhancement is disappeared by inserting an ultrathin Cu layer between the Ni$_{81}$Fe$_{19}$ and Pt-oxide layers. These results demonstrate an essential role of the direct contact between the Ni$_{81}$Fe$_{19}$ and Pt-oxide to induce sizable interface spin-orbit coupling. Furthermore, the spin-absorption parameter of the Ni$_{81}$Fe$_{19}$/Pt-oxide interface is comparable to that of intensively studied heterostructures with strong spin-orbit coupling, such as an oxide interface, topological insulators, metallic junctions with Rashba spin-orbit coupling. This result illustrates strong spin-orbit coupling at the ferromagnetic-metal/Pt-oxide interface, providing an important piece of information for quantitative understanding the spin absorption and spin-charge conversion at the ferromagnetic-metal/metallic-oxide interface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا