Do you want to publish a course? Click here

Partial topological Zak phase and dynamical confinement in non-Hermitian bipartite system

140   0   0.0 ( 0 )
 Added by Xizheng Zhang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Unlike a Chern number in $2$D and $3$D topological system, Zak phase takes a subtle role to characterize the topological phase in $1$D. On the one hand, it is not a gauge invariant, on the other hand, the Zak phase difference between two quantum phases can be used to identify the topological phase transitions. A non-Hermitian system may inherit some characters of a Hermitian system, such as entirely real spectrum, unitary evolution, topological energy band, etc. In this paper, we study the influence of non-Hermitian term on the Zak phase for a class of non-Hermitian systems. We show exactly that the real part of the Zak phase remains unchanged in a bipartite lattice. In a concrete example, $1$D Su-Schrieffer-Heeger (SSH) model, we find that the real part of Zak phase can be obtained by an adiabatic process. To demonstrate this finding, we investigate a scattering problem for a time-dependent scattering center, which is a magnetic-flux-driven non-Hermitian SSH ring. Owing to the nature of the Zak phase, the intriguing features of this design are the wave-vector independence and allow two distinct behaviors, perfect transmission or confinement, depending on the timing of a flux impulse threading the ring. When the flux is added during a wavepacket travelling within the ring, the wavepacket is confined in the scatter partially. Otherwise, it exhibits perfect transmission through the scatter. Our finding extends the understanding and broaden the possible application of geometric phase in a non-Hermitian system.



rate research

Read More

The geometric phase acquired by an electron in a one-dimensional periodic lattice due to weak electric perturbation is found and referred to as the Pancharatnam-Zak phase. The underlying mathematical structure responsible for this phase is unveiled. As opposed to the well-known Zak phase, the Pancharatnam-Zak phase is a gauge invariant observable phase, and correctly characterizes the energy bands of the lattice. We demonstrate the gauge invariance of the Pancharatnam-Zak phase in two celebrated models displaying topological phases. A filled band generalization of this geometric phase is constructed and is observed to be sensitive to the Fermi-Dirac statistics of the band electrons. The measurement of the single-particle Pancharatnam-Zak phase in individual topological phases, as well as the statistical contribution in its many-particle generalization, should be accessible in various controlled quantum experiments.
In the traditional quantum theory, one-dimensional quantum spin models possess a factorization surface where the ground states are fully separable having vanishing bipartite as well as multipartite entanglement. We report that in the non-Hermitian counterpart of these models, these factorization surfaces either can predict the exceptional points where the unbroken to the broken transition occurs or can guarantee the reality of the spectrum, thereby proposing a procedure to reveal the unbroken phase. We first analytically demonstrate it for the nearest-neighbor rotation-time RT-symmetric XY model with uniform and alternating transverse magnetic fields, referred to as the iATXY model. Exact diagonalization techniques are then employed to establish this fact for the RT-symmetric XYZ model with short- and long-range interactions as well as for the variable-ranged iATXY model. Moreover, we show that although the factorization surface prescribes the unbroken phase of the non-Hermitian model, the bipartite nearest-neighbor entanglement at the exceptional point is nonvanishing.
72 - Li-Jun Lang , Shi-Liang Zhu , 2021
Nonlinearities in lattices with topologically nontrivial band structures can give rise to topological solitons, whose properties differ from both conventional lattice solitons and linear topological boundary states. We show that a Su-Schrieffer-Heeger-type lattice with both nonlinearity and nonreciprocal non-Hermiticity hosts a novel oscillatory soliton, which we call a topological end breather. The end breather is strongly localized to a self-induced topological domain near the end of the lattice, in sharp contrast to the extended topological solitons previously found in one-dimensional lattices. Its stable oscillatory dynamics can be interpreted as a Rabi oscillation between two self-induced topological boundary states, emerging from a combination of chiral lattice symmetry and the non-Hermitian skin effect. This demonstrates that non-Hermitian effects can give rise to a wider variety of topological solitons than was previously known to exist.
We investigate the localization and topological transitions in a one-dimensional (interacting) non-Hermitian quasiperiodic lattice, which is described by a generalized Aubry-Andr{e}-Harper model with irrational modulations in the off-diagonal hopping and on-site potential and with non-Hermiticities from the nonreciprocal hopping and complex potential phase. For noninteracting cases, we reveal that the nonreciprocal hopping (the complex potential phase) can enlarge the delocalization (localization) region in the phase diagrams spanned by two quasiperiodical modulation strengths. We show that the localization transition are always accompanied by a topological phase transition characterized the winding numbers of eigenenergies in three different non-Hermitian cases. Moreover, we find that a real-complex eigenenergy transition in the energy spectrum coincides with (occurs before) these two phase transitions in the nonreciprocal (complex potential) case, while the real-complex transition is absent under the coexistence of the two non-Hermiticities. For interacting spinless fermions, we demonstrate that the extended phase and the many-body localized phase can be identified by the entanglement entropy of eigenstates and the level statistics of complex eigenenergies. By making the critical scaling analysis, we further show that the many-body localization transition coincides with the real-complex transition and occurs before the topological transition in the nonreciprocal case, which are absent in the complex phase case.
Discrete-time quantum walks are known to exhibit exotic topological states and phases. Physical realization of quantum walks in a noisy environment may destroy these phases. We investigate the behavior of topological states in quantum walks in the presence of a lossy environment. The environmental effects in the quantum walk dynamics are addressed using the non-Hermitian Hamiltonian approach. We show that the topological phases of the quantum walks are robust against moderate losses. The topological order in one-dimensional split-step quantum walk persists as long as the Hamiltonian is $mathcal{PT}$-symmetric. Although the topological nature persists in two-dimensional quantum walks as well, the $mathcal{PT}$-symmetry has no role to play there. Furthermore, we observe the noise-induced topological phase transition in two-dimensional quantum walks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا