No Arabic abstract
Radiation pressure within engineered structures has recently been used to couple the motion of nanomechanical objects with high sensitivity to optical and microwave electromagnetic fields. Here, we demonstrate a form of electromechanical crystal for coupling microwave photons and hypersonic phonons by embedding the vacuum-gap capacitor of a superconducting resonator within a phononic crystal acoustic cavity. Utilizing a two-photon resonance condition for efficient microwave pumping and a phononic bandgap shield to eliminate acoustic radiation, we demonstrate large cooperative coupling ($C approx 30$) between a pair of electrical resonances at $10$GHz and an acoustic resonance at $0.425$GHz. Electrical read-out of the phonon occupancy shows that the hypersonic acoustic mode has an intrinsic energy decay time of $2.3$ms and thermalizes close to its quantum ground-state of motion (occupancy $1.5$) at a fridge temperature of $10$mK. Such an electromechanical transducer is envisioned as part of a hybrid quantum circuit architecture, capable of interfacing to both superconducting qubits and optical photons.
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questions about macroscopic quantum coherence. The field of cavity opto- and electro-mechanics, in which a mechanical oscillator is parametrically coupled to an electromagnetic resonance, provides a practical architecture for the manipulation and detection of motion at the quantum level. Reaching this quantum level requires strong coupling, interaction timescales between the two systems that are faster than the time it takes for energy to be dissipated. By incorporating a free-standing, flexible aluminum membrane into a lumped-element superconducting resonant cavity, we have increased the single photon coupling strength between radio-frequency mechanical motion and resonant microwave photons by more than two orders of magnitude beyond the current state-of-the-art. A parametric drive tone at the difference frequency between the two resonant systems dramatically increases the overall coupling strength. This has allowed us to completely enter the strong coupling regime. This is evidenced by a maximum normal mode splitting of nearly six bare cavity line-widths. Spectroscopic measurements of these dressed states are in excellent quantitative agreement with recent theoretical predictions. The basic architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of the quantum states of mechanical motion.
A key ingredient for a quantum network is an interface between stationary quantum bits and photons, which act as flying qubits for interactions and communication. Photonic crystal architectures are promising platforms for enhancing the coupling of light to solid state qubits. Quantum dots can be integrated into a photonic crystal, with optical transitions coupling to photons and spin states forming a long-lived quantum memory. Many researchers have now succeeded in coupling these emitters to photonic crystal cavities, but there have been no demonstrations of a functional spin qubit and quantum gates in this environment. Here we have developed a coupled cavity-quantum dot system in which the dot is controllably charged with a single electron. We perform the initialization, rotation and measurement of a single electron spin qubit using laser pulses and find that the cavity can significantly improve these processes.
Connecting nanoscale mechanical resonators to microwave quantum circuits opens new avenues for storing, processing, and transmitting quantum information. In this work, we couple a phononic crystal cavity to a tunable superconducting quantum circuit. By fabricating a one-dimensional periodic pattern in a thin film of lithium niobate and introducing a defect in this artificial lattice, we localize a 6 gigahertz acoustic resonance to a wavelength-scale volume of less than one cubic micron. The strong piezoelectricity of lithium niobate efficiently couples the localized vibrations to the electric field of a widely tunable high-impedance Josephson junction array resonator. We measure a direct phonon-photon coupling rate $g/2pi approx 1.6 , mathrm{MHz}$ and a mechanical quality factor $Q_mathrm{m} approx 3 times 10^4$ leading to a cooperativity $Csim 4$ when the two modes are tuned into resonance. Our work has direct application to engineering hybrid quantum systems for microwave-to-optical conversion as well as emerging architectures for quantum information processing.
Light-matter interaction in optomechanical systems is the foundation for ultra-sensitive detection schemes [1,2] as well as the generation of phononic and photonic quantum states [3-10]. Electromechanical systems realize this optomechanical interaction in the microwave regime. In this context, capacitive coupling arrangements demonstrated interaction rates of up to 280 Hz [11]. Complementary, early proposals [12-15] and experiments [16,17] suggest that inductive coupling schemes are tunable and have the potential to reach the vacuum strong-coupling regime. Here, we follow the latter approach by integrating a partly suspended superconducting quantum interference device (SQUID) into a microwave resonator. The mechanical displacement translates into a time varying flux in the SQUID loop, thereby providing an inductive electromechanical coupling. We demonstrate a sideband-resolved electromechanical system with a tunable vacuum coupling rate of up to 1.62 kHz, realizing sub-aN Hz-1/2 force sensitivities. Moreover, we study the frequency splitting of the microwave resonator for large mechanical amplitudes confirming the large coupling. The presented inductive coupling scheme shows the high potential of SQUID-based electromechanics for targeting the full wealth of the intrinsically nonlinear optomechanics Hamiltonian.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quantum dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.