Do you want to publish a course? Click here

Realization of Hofstadters butterfly and a one-way edge mode in a polaritonic system

73   0   0.0 ( 0 )
 Added by Rimi Banerjee
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a scheme to generate an artificial gauge field for the system of neutral bosons, represented by polaritons in micropillars arranged into a square lattice. The splitting between the two polarizations of the micropillars breaks the time-reversal symmetry (TRS) and results in the effective phase-dependent hopping between cavities. This can allow for engineering a nonzero flux on the plaquette, corresponding to an artificial magnetic field. Changing the phase, we observe a characteristic Hofstadters butterfly pattern and the appearance of chiral edge states for a finite-size structure. For long-lived polaritons, we show that the propagation of wave packets at the edge is robust against disorder. Moreover, given the inherent driven-dissipative nature of polariton lattices, we find that the system can exhibit topological lasing, recently discovered for active ring cavity arrays. The results point to a static way to realize artificial magnetic field in neutral spinful systems, avoiding the periodic modulation of the parameters or strong spin-orbit interaction. Ultimately, the described system can allow for high-power topological single-mode lasing which is robust to imperfections.



rate research

Read More

377 - C. R. Dean , L. Wang , P. Maher 2012
Electrons moving through a spatially periodic lattice potential develop a quantized energy spectrum consisting of discrete Bloch bands. In two dimensions, electrons moving through a magnetic field also develop a quantized energy spectrum, consisting of highly degenerate Landau energy levels. In 1976 Douglas Hofstadter theoretically considered the intersection of these two problems and discovered that 2D electrons subjected to both a magnetic field and a periodic electrostatic potential exhibit a self-similar recursive energy spectrum. Known as Hofstadters butterfly, this complex spectrum results from a delicate interplay between the characteristic lengths associated with the two quantizing fields, and represents one of the first quantum fractals discovered in physics. In the decades since, experimental attempts to study this effect have been limited by difficulties in reconciling the two length scales. Typical crystalline systems (<1 nm periodicity) require impossibly large magnetic fields to reach the commensurability condition, while in artificially engineered structures (>100 nm), the corresponding fields are too small to completely overcome disorder. Here we demonstrate that moire superlattices arising in bilayer graphene coupled to hexagonal boron nitride provide a nearly ideal-sized periodic modulation, enabling unprecedented experimental access to the fractal spectrum. We confirm that quantum Hall effect features associated with the fractal gaps are described by two integer topological quantum numbers, and report evidence of their recursive structure. Observation of Hofstadters spectrum in graphene provides the further opportunity to investigate emergent behaviour within a fractal energy landscape in a system with tunable internal degrees of freedom.
We study discrete nonlinear edge excitations of polaritonic kagome lattice. We show that when nontrivial topological phase of polaritons is realized, the kagome lattice permits propagation of bright solitons formed from topological edge states.
Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which are surface modes in 3D, edge modes in 2D or localized end states in 1D. In the case of complete localization these Majorana modes obey non-Abelian exchange statistics making them interesting building blocks for topological quantum computing. Here we report superconductivity induced into the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference, we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the 2D topological phase. These experiments establish InAs/GaSb as a robust platform for further confinement of Majoranas into localized states enabling future investigations of non-Abelian statistics.
We present a microwave realization of finite tight-binding graphene-like structures. The structures are realized using discs with a high index of refraction. The discs are placed on a metallic surface while a second surface is adjusted atop the discs, such that the waves coupling the discs in the air are evanescent, leading to the tight-binding behavior. In reflection measurements the Dirac point and a linear increase close to the Dirac point is observed, if the measurement is performed inside the sample. Resonances due to edge states are found close to the Dirac point if the measurements are performed at the zigzag-edge or at the corner in case of a broken benzene ring.
Time-periodic (Floquet) topological phases of matter exhibit bulk-edge relationships that are more complex than static topological insulators and superconductors. Finding the edge modes unique to driven systems usually requires numerics. Here we present a minimal two-band model of Floquet topological insulators and semimetals in two dimensions where all the bulk and edge properties can be obtained analytically. It is based on the extended Harper model of quantum Hall effect at flux one half. We show that periodical driving gives rise to a series of phases characterized by a pair of integers. The model has a most striking feature: the spectrum of the edge modes is always given by a single cosine function, $omega(k_y)propto cos k_y$ where $k_y$ is the wave number along the edge, as if it is freely dispersing and completely decoupled from the bulk. The cosine mode is robust against the change in driving parameters and persists even to semi-metallic phases with Dirac points. The localization length of the cosine mode is found to contain an integer and in this sense quantized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا