Do you want to publish a course? Click here

Cosine Edge Mode in a Periodically Driven Quantum System

67   0   0.0 ( 0 )
 Added by Indu Satija
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-periodic (Floquet) topological phases of matter exhibit bulk-edge relationships that are more complex than static topological insulators and superconductors. Finding the edge modes unique to driven systems usually requires numerics. Here we present a minimal two-band model of Floquet topological insulators and semimetals in two dimensions where all the bulk and edge properties can be obtained analytically. It is based on the extended Harper model of quantum Hall effect at flux one half. We show that periodical driving gives rise to a series of phases characterized by a pair of integers. The model has a most striking feature: the spectrum of the edge modes is always given by a single cosine function, $omega(k_y)propto cos k_y$ where $k_y$ is the wave number along the edge, as if it is freely dispersing and completely decoupled from the bulk. The cosine mode is robust against the change in driving parameters and persists even to semi-metallic phases with Dirac points. The localization length of the cosine mode is found to contain an integer and in this sense quantized.



rate research

Read More

Recent theoretical work on time-periodically kicked Hofstadter model found robust counter-propagating edge modes. It remains unclear how ubiquitously such anomalous modes can appear, and what dictates their robustness against disorder. Here we shed further light on the nature of these modes by analyzing a simple type of periodic driving where the hopping along one spatial direction is modulated sinusoidally with time while the hopping along the other spatial direction is kept constant. We obtain the phase diagram for the quasienergy spectrum at flux 1/3 as the driving frequency $omega$ and the hopping anisotropy are varied. A series of topologically distinct phases with counter-propagating edge modes appear due to the harmonic driving, similar to the case of a periodically kicked system studied earlier. We analyze the time dependence of the pair of Floquet edge states localized at the same edge, and compare their Fourier components in the frequency domain. In the limit of small modulation, one of the Floquet edge mode within the pair can be viewed as the edge mode originally living in the other energy gap shifted in quasienergy by $hbar omega$, i.e., by absorption or emission of a photon of frequency $omega$. Our result suggests that counter-propagating Floquet edge modes are generic features of periodically driven integer quantum Hall systems, and not tied to any particular driving protocol. It also suggests that the Floquet edge modes would remain robust to any static perturbations that do not destroy the chiral edge modes of static quantum Hall states.
112 - Andre Eckardt 2016
Time periodic forcing in the form of coherent radiation is a standard tool for the coherent manipulation of small quantum systems like single atoms. In the last years, periodic driving has more and more also been considered as a means for the coherent control of many-body systems. In particular, experiments with ultracold quantum gases in optical lattices subjected to periodic driving in the lower kilohertz regime have attracted a lot of attention. Milestones include the observation of dynamic localization, the dynamic control of the quantum phase transition between a bosonic superfluid and a Mott insulator, as well as the dynamic creation of strong artificial magnetic fields and topological band structures. This article reviews these recent experiments and their theoretical description. Moreover, fundamental properties of periodically driven many-body systems are discussed within the framework of Floquet theory, including heating, relaxation dynamics, anomalous topological edge states, and the response to slow parameter variations.
We report on the out-of-equilibrium dynamics of a Bose-Einstein condensate (BEC) placed in an optical lattice whose phase is suddenly modulated. The frequency and the amplitude of modulation are chosen to ensure a negative renormalized tunneling rate. Under these conditions, staggered states are nucleated by a spontaneous four wave mixing mechanism. The nucleation time is experimentally studied as a function of the renormalized tunnel rate, the atomic density and the modulation frequency. Our results are quantitatively well accounted for by a Truncated Wigner approach and reveal the nucleation of gap solitons after the quench. We discuss the role of quantum versus thermal fluctuations in the nucleation process and experimentally address the limit of the effective Hamiltonian approach.
Quantum systems can show qualitatively new forms of behavior when they are driven by fast time-periodic modulations. In the limit of large driving frequency, the long-time dynamics of such systems can often be described by a time-independent effective Hamiltonian, which is generally identified through a perturbative treatment. Here, we present a general formalism that describes time-modulated physical systems, in which the driving frequency is large, but resonant with respect to energy spacings inherent to the system at rest. Such a situation is currently exploited in optical-lattice setups, where superlattice (or Wannier-Stark-ladder) potentials are resonantly modulated so as to control the tunneling matrix elements between lattice sites, offering a powerful method to generate artificial fluxes for cold-atom systems. The formalism developed in this work identifies the basic ingredients needed to generate interesting flux patterns and band structures using resonant modulations. Additionally, our approach allows for a simple description of the micro-motion underlying the dynamics; we illustrate its characteristics based on diverse dynamic-lattice configurations. It is shown that the impact of the micro-motion on physical observables strongly depends on the implemented scheme, suggesting that a theoretical description in terms of the effective Hamiltonian alone is generally not sufficient to capture the full time-evolution of the system.
We investigate multi-photon interband excitation processes in an optical lattice that is driven periodically in time by a modulation of the lattice depth. Assuming the system to be prepared in the lowest band, we compute the excitation spectrum numerically. Moreover, we estimate the effective coupling parameters for resonant interband excitation processes analytically, employing degenerate perturbation theory in Floquet space. We find that below a threshold driving strength, interband excitations are suppressed exponentially with respect to the inverse driving frequency. For sufficiently low frequencies, this leads to a rather sudden onset of interband heating, once the driving strength reaches the threshold. We argue that this behavior is rather generic and should also be found in lattice systems that are driven by other forms of periodic forcing. Our results are relevant for Floquet engineering, where a lattice system is driven periodically in time in order to endow it with novel properties like the emergence of a strong artificial magnetic field or a topological band structure. In this context, interband excitation processes correspond to detrimental heating.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا