Do you want to publish a course? Click here

Semiclassical theory of out-of-time-order correlators for low-dimensional classically chaotic systems

195   0   0.0 ( 0 )
 Added by Ignacio Garcia-Mata
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The out-of-time-order correlator (OTOC), recently analyzed in several physical contexts, is studied for low-dimensional chaotic systems through semiclassical expansions and numerical simulations. The semiclassical expansion for the OTOC yields a leading-order contribution in $hbar^2$ that is exponentially increasing with time within an intermediate, temperature-dependent, time-window. The growth-rate in such a regime is governed by the Lyapunov exponent of the underlying classical system and scales with the square-root of the temperature.



rate research

Read More

119 - Wen-Lei Zhao 2021
This letter reports the findings of the late time behavior of the out-of-time-ordered correlators (OTOCs) via a quantum kicked rotor model with $cal{PT}$-symmetric driving potential. An analytical expression of the OTOCs quadratic growth with time is yielded as $C(t)=G(K)t^2$. Interestingly, the growth rate $G$ features a quantized response to the increase of the kick strength $K$, which indicates the chaos-assisted quantization in the OTOCs dynamics. The physics behind this is the quantized absorption of energy from the non-Hermitian driving potential. This discovery and the ensuing establishment of the quantization mechanism in the dynamics of quantum chaos with non-Hermiticity will provide insights in chaotic dynamics, promising unprecedented observations in updated experiments.
The out-of-time-order correlator (OTOC) is considered as a measure of quantum chaos. We formulate how to calculate the OTOC for quantum mechanics with a general Hamiltonian. We demonstrate explicit calculations of OTOCs for a harmonic oscillator, a particle in a one-dimensional box, a circle billiard and stadium billiards. For the first two cases, OTOCs are periodic in time because of their commensurable energy spectra. For the circle and stadium billiards, they are not recursive but saturate to constant values which are linear in temperature. Although the stadium billiard is a typical example of the classical chaos, an expected exponential growth of the OTOC is not found. We also discuss the classical limit of the OTOC. Analysis of a time evolution of a wavepacket in a box shows that the OTOC can deviate from its classical value at a time much earlier than the Ehrenfest time.
We study out-of-time order correlators (OTOCs) of the form $langlehat A(t)hat B(0)hat C(t)hat D(0)rangle$ for a quantum system weakly coupled to a dissipative environment. Such an open system may serve as a model of, e.g., a small region in a disordered interacting medium coupled to the rest of this medium considered as an environment. We demonstrate that for a system with discrete energy levels the OTOC saturates exponentially $propto sum a_i e^{-t/tau_i}+const$ to a constant value at $trightarrowinfty$, in contrast with quantum-chaotic systems which exhibit exponential growth of OTOCs. Focussing on the case of a two-level system, we calculate microscopically the decay times $tau_i$ and the value of the saturation constant. Because some OTOCs are immune to dephasing processes and some are not, such correlators may decay on two sets of parametrically different time scales related to inelastic transitions between the system levels and to pure dephasing processes, respectively. In the case of a classical environment, the evolution of the OTOC can be mapped onto the evolution of the density matrix of two systems coupled to the same dissipative environment.
Information scrambling, which is the spread of local information through a systems many-body degrees of freedom, is an intrinsic feature of many-body dynamics. In quantum systems, the out-of-time-ordered correlator (OTOC) quantifies information scrambling. Motivated by experiments that have measured the OTOC at infinite temperature and a theory proposal to measure the OTOC at finite temperature using the thermofield double state, we describe a protocol to measure the OTOC in a finite temperature spin chain that is realized approximately as one half of the ground state of two moderately-sized coupled spin chains. We consider a spin Hamiltonian with particle-hole symmetry, for which we show that the OTOC can be measured without needing sign-reversal of the Hamiltonian. We describe a protocol to mitigate errors in the estimated OTOC, arising from the finite approximation of the system to the thermofield double state. We show that our protocol is also robust to main sources of decoherence in experiments.
We present a method to probe the Out-of-Time-Order Correlators (OTOCs) of a general system by coupling it to a harmonic oscillator probe. When the systems degrees of freedom are traced out, the OTOCs imprint themselves on the generalized influence functional of the oscillator. This generalized influence functional leads to a local effective action for the probe whose couplings encode OTOCs of the system. We study the structural features of this effective action and the constraints on the couplings from microscopic unitarity. We comment on how the OTOCs of the system appear in the OTOCs of the probe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا