No Arabic abstract
The out-of-time-order correlator (OTOC) is considered as a measure of quantum chaos. We formulate how to calculate the OTOC for quantum mechanics with a general Hamiltonian. We demonstrate explicit calculations of OTOCs for a harmonic oscillator, a particle in a one-dimensional box, a circle billiard and stadium billiards. For the first two cases, OTOCs are periodic in time because of their commensurable energy spectra. For the circle and stadium billiards, they are not recursive but saturate to constant values which are linear in temperature. Although the stadium billiard is a typical example of the classical chaos, an expected exponential growth of the OTOC is not found. We also discuss the classical limit of the OTOC. Analysis of a time evolution of a wavepacket in a box shows that the OTOC can deviate from its classical value at a time much earlier than the Ehrenfest time.
We present a method to probe the Out-of-Time-Order Correlators (OTOCs) of a general system by coupling it to a harmonic oscillator probe. When the systems degrees of freedom are traced out, the OTOCs imprint themselves on the generalized influence functional of the oscillator. This generalized influence functional leads to a local effective action for the probe whose couplings encode OTOCs of the system. We study the structural features of this effective action and the constraints on the couplings from microscopic unitarity. We comment on how the OTOCs of the system appear in the OTOCs of the probe.
Exponential growth of thermal out-of-time-order correlator (OTOC) is an indicator of a possible gravity dual, and a simple toy quantum model showing the growth is being looked for. We consider a system of two harmonic oscillators coupled nonlinearly with each other, and numerically observe that the thermal OTOC grows exponentially in time. The system is well-known to be classically chaotic, and is a reduction of Yang-Mills-Higgs theory. The exponential growth is certified because the growth exponent (quantum Lyapunov exponent) of the thermal OTOC is well matched with the classical Lyapunov exponent, including their energy/temperature dependence. Even in the presence of the exponential growth in the OTOC, the energy level spacings are not sufficient to judge a Wigner distribution, hence the OTOC is a better indicator of quantum chaos.
The out-of-time-order correlator (OTOC), recently analyzed in several physical contexts, is studied for low-dimensional chaotic systems through semiclassical expansions and numerical simulations. The semiclassical expansion for the OTOC yields a leading-order contribution in $hbar^2$ that is exponentially increasing with time within an intermediate, temperature-dependent, time-window. The growth-rate in such a regime is governed by the Lyapunov exponent of the underlying classical system and scales with the square-root of the temperature.
We study out-of-time order correlators (OTOCs) of the form $langlehat A(t)hat B(0)hat C(t)hat D(0)rangle$ for a quantum system weakly coupled to a dissipative environment. Such an open system may serve as a model of, e.g., a small region in a disordered interacting medium coupled to the rest of this medium considered as an environment. We demonstrate that for a system with discrete energy levels the OTOC saturates exponentially $propto sum a_i e^{-t/tau_i}+const$ to a constant value at $trightarrowinfty$, in contrast with quantum-chaotic systems which exhibit exponential growth of OTOCs. Focussing on the case of a two-level system, we calculate microscopically the decay times $tau_i$ and the value of the saturation constant. Because some OTOCs are immune to dephasing processes and some are not, such correlators may decay on two sets of parametrically different time scales related to inelastic transitions between the system levels and to pure dephasing processes, respectively. In the case of a classical environment, the evolution of the OTOC can be mapped onto the evolution of the density matrix of two systems coupled to the same dissipative environment.
Out-of-time-ordered correlators (OTOCs) have been suggested as a means to study quantum chaotic behavior in various systems. In this work, I calculate OTOCs for the quantum mechanical anharmonic oscillator with quartic potential, which is classically integrable and has a Poisson-like energy-level distribution. For low temperature, OTOCs are periodic in time, similar to results for the harmonic oscillator and the particle in a box. For high temperature, OTOCs exhibit a rapid (but power-like) rise at early times, followed by saturation consistent with $2langle x^2rangle_T langle p^2rangle_T$ at late times. At high temperature, the spectral form factor decreases at early times, bounces back and then reaches a plateau with strong fluctuations.