No Arabic abstract
Information scrambling, which is the spread of local information through a systems many-body degrees of freedom, is an intrinsic feature of many-body dynamics. In quantum systems, the out-of-time-ordered correlator (OTOC) quantifies information scrambling. Motivated by experiments that have measured the OTOC at infinite temperature and a theory proposal to measure the OTOC at finite temperature using the thermofield double state, we describe a protocol to measure the OTOC in a finite temperature spin chain that is realized approximately as one half of the ground state of two moderately-sized coupled spin chains. We consider a spin Hamiltonian with particle-hole symmetry, for which we show that the OTOC can be measured without needing sign-reversal of the Hamiltonian. We describe a protocol to mitigate errors in the estimated OTOC, arising from the finite approximation of the system to the thermofield double state. We show that our protocol is also robust to main sources of decoherence in experiments.
We present a protocol to experimentally measure the infinite-temperature out-of-time-ordered correlation (OTOC) -- which is a probe of quantum information scrambling in a system -- for systems with a Hamiltonian which has either a chiral symmetry or a particle-hole symmetry. We show that the OTOC can be obtained by preparing two entangled systems, evolving them with the Hamiltonian, and measuring appropriate local observables. At the cost of requiring two copies of the system and putting restrictions on the Hamiltonians symmetries, we show that our method provides some advantages over existing methods -- it can be implemented without reversing the sign of the Hamiltonian, it requires fewer measurements than schemes based on implementing the SWAP operator, and it is robust to imperfections like some earlier methods. Our ideas can be implemented in currently available quantum platforms.
Chaotic dynamics in quantum many-body systems scrambles local information so that at late times it can no longer be accessed locally. This is reflected quantitatively in the out-of-time-ordered correlator of local operators, which is expected to decay to zero with time. However, for systems of finite size, out-of-time-ordered correlators do not decay exactly to zero and in this paper we show that the residual value can provide useful insights into the chaotic dynamics. When energy is conserved, the late-time saturation value of the out-of-time-ordered correlator of generic traceless local operators scales as an inverse polynomial in the system size. This is in contrast to the inverse exponential scaling expected for chaotic dynamics without energy conservation. We provide both analytical arguments and numerical simulations to support this conclusion.
Out-of-time-ordered correlators (OTOCs) have been proposed as a tool to witness quantum information scrambling in many-body system dynamics. These correlators can be understood as averages over nonclassical multi-time quasi-probability distributions (QPDs). These QPDs have more information, and their nonclassical features witness quantum information scrambling in a more nuanced way. However, their high dimensionality and nonclassicality make QPDs challenging to measure experimentally. We focus on the topical case of a many-qubit system and show how to obtain such a QPD in the laboratory using circuits with three and four sequential measurements. Averaging distinct values over the same measured distribution reveals either the OTOC or parameters of its QPD. Stronger measurements minimize experimental resources despite increased dynamical disturbance.
The out-of-time-ordered correlator (OTOC) is central to the understanding of information scrambling in quantum many-body systems. In this work, we show that the OTOC in a quantum many-body system close to its critical point obeys dynamical scaling laws which are specified by a few universal critical exponents of the quantum critical point. Such scaling laws of the OTOC imply a universal form for the butterfly velocity of a chaotic system in the quantum critical region and allow one to locate the quantum critical point and extract all universal critical exponents of the quantum phase transitions. We numerically confirm the universality of the butterfly velocity in a chaotic model, namely the transverse axial next-nearest-neighbor Ising model, and show the feasibility of extracting the critical properties of quantum phase transitions from OTOC using the Lipkin-Meshkov-Glick (LMG) model.
Interacting many-body quantum systems show a rich array of physical phenomena and dynamical properties, but are notoriously difficult to study: they are challenging analytically and exponentially difficult to simulate on classical computers. Small-scale quantum information processors hold the promise to efficiently emulate these systems, but characterizing their dynamics is experimentally challenging, requiring probes beyond simple correlation functions and multi-body tomographic methods. Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs), one of the most effective tools for studying quantum system evolution and processes like quantum thermalization. We implement a 3x3 two-dimensional hard-core Bose-Hubbard lattice with a superconducting circuit, study its time-reversibility by performing a Loschmidt echo, and measure OTOCs that enable us to observe the propagation of quantum information. A central requirement for our experiments is the ability to coherently reverse time evolution, which we achieve with a digital-analog simulation scheme. In the presence of frequency disorder, we observe that localization can partially be overcome with more particles present, a possible signature of many-body localization in two dimensions.