No Arabic abstract
Inspired by the newly discovered isomeric states in the rare-earth neutron-rich nuclei, high-$K$ isomeric states in neutron-rich samarium and gadolinium isotopes are investigated within the framework of the cranked shell model (CSM) with pairing correlation treated by a particle-number-conserving (PNC) method. The experimental multi-particle state energies and moments of inertia are reproduced quite well by the PNC-CSM calculations. A remarkable effect from the high-order deformation $varepsilon_{6}$ is demonstrated. Based on the occupation probabilities, the configurations are assigned to the observed high-$K$ isomeric states. The lower $5^-$ isomeric state in $^{158}$Sm is preferred as the two-proton state with configuration $pifrac{5}{2}^{+}[413]otimespifrac{5}{2}^{-}[532]$. More low-lying two-particle states are predicted. The systematics of the electronic quadrupole transition probabilities, $B(E2)$ values along the neodymium, samarium, gadolinium and dysprosium isotopes and $N=96,98,100,102$ isotones chains is investigated to reveal the midshell collectivities.
We review the impact of nuclear forces on matter at neutron-rich extremes. Recent results have shown that neutron-rich nuclei become increasingly sensitive to three-nucleon forces, which are at the forefront of theoretical developments based on effective field theories of quantum chromodynamics. This includes the formation of shell structure, the spectroscopy of exotic nuclei, and the location of the neutron dripline. Nuclear forces also constrain the properties of neutron-rich matter, including the neutron skin, the symmetry energy, and the structure of neutron stars. We first review our understanding of three-nucleon forces and show how chiral effective field theory makes unique predictions for many-body forces. Then, we survey results with three-nucleon forces in neutron-rich oxygen and calcium isotopes and neutron-rich matter, which have been explored with a range of many-body methods. Three-nucleon forces therefore provide an exciting link between theoretical, experimental and observational nuclear physics frontiers.
We investigate the influence of deformation on the possible occurrence of long-lived $K$ isomers in Hf isotopes around N=116, using configuration-constrained calculations of potential-energy surfaces. Despite having reduced shape elongation, the multi-quasiparticle states in $^{186,188}$Hf remain moderately robust against triaxial distortion, supporting the long expected occurrence of exceptionally long-lived isomers. The calculations are compared with available experimental data.
A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the $sdf$ interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of $beta_{2}$-$beta_{3}$ energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for $beta_{3}$-soft potentials.
It is proposed here to investigate three major properties of the nuclear force that influence the amplitude of shell gaps, the nuclear binding energies as well as the nuclear $beta$-decay properties far from stability, that are all key ingredients for modeling the r-process nucleosynthesis. These properties are derived from experiments performed in different facilities worldwide, using several various state-of-the-art experimental techniques including transfer and knockout reactions. Expected consequences on the r process nucleosynthesis as well as on the stability of super heavy elements are discussed.
Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential mode. The interference effect is tested for neutron-rich $^{82}$Ge and $^{134}$Sn nuclei relevant to $r$-process and light nucleus $^{13}$C which is neutron poison in the $s$-process and produces long-lived radioactive nucleus $^{14}$C ($T_{1/2}=5700$ y). The interference effects in those nuclei are significant around resonances, and low energy region if $s$-wave neutron direct capture is possible. Maxwellian averaged cross sections at $kT=30$ and $300$ keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.