Do you want to publish a course? Click here

Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter

87   0   0.0 ( 0 )
 Added by Kai Hebeler
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We review the impact of nuclear forces on matter at neutron-rich extremes. Recent results have shown that neutron-rich nuclei become increasingly sensitive to three-nucleon forces, which are at the forefront of theoretical developments based on effective field theories of quantum chromodynamics. This includes the formation of shell structure, the spectroscopy of exotic nuclei, and the location of the neutron dripline. Nuclear forces also constrain the properties of neutron-rich matter, including the neutron skin, the symmetry energy, and the structure of neutron stars. We first review our understanding of three-nucleon forces and show how chiral effective field theory makes unique predictions for many-body forces. Then, we survey results with three-nucleon forces in neutron-rich oxygen and calcium isotopes and neutron-rich matter, which have been explored with a range of many-body methods. Three-nucleon forces therefore provide an exciting link between theoretical, experimental and observational nuclear physics frontiers.

rate research

Read More

During the late stages of gravitational core-collapse of massive stars, extreme isospin asymmetries are reached within the core. Due to the lack of microscopic calculations of electron capture (EC) rates for all relevant nuclei, in general simple analytic parameterizations are employed. We study here several extensions of these parameterizations, allowing for a temperature, electron density and isospin dependence as well as for odd-even effects. The latter extra degrees of freedom considerably improve the agreement with large scale microscopic rate calculations. We find, in particular, that the isospin dependence leads to a significant reduction of the global EC rates during core collapse with respect to fiducial results, where rates optimized on calculations of stable $fp$-shell nuclei are used. Our results indicate that systematic microscopic calculations and experimental measurements in the $Napprox 50$ neutron rich region are desirable for realistic simulations of the core-collapse.
We study excited-state properties of neutron-rich calcium isotopes based on chiral two- and three-nucleon interactions. We first discuss the details of our many-body framework, investigate convergence properties, and for two-nucleon interactions benchmark against coupled-cluster calculations. We then focus on the spectroscopy of 47-56Ca, finding that with both 3N forces and an extended pfg9/2 valence space, we obtain a good level of agreement with experiment. We also study electromagnetic transitions and find that experimental data are well described by our calculations. In addition, we provide predictions for unexplored properties of neutron-rich calcium isotopes.
Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential mode. The interference effect is tested for neutron-rich $^{82}$Ge and $^{134}$Sn nuclei relevant to $r$-process and light nucleus $^{13}$C which is neutron poison in the $s$-process and produces long-lived radioactive nucleus $^{14}$C ($T_{1/2}=5700$ y). The interference effects in those nuclei are significant around resonances, and low energy region if $s$-wave neutron direct capture is possible. Maxwellian averaged cross sections at $kT=30$ and $300$ keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.
135 - H.L. Liu , F.R. Xu , P.M. Walker 2011
We investigate the influence of deformation on the possible occurrence of long-lived $K$ isomers in Hf isotopes around N=116, using configuration-constrained calculations of potential-energy surfaces. Despite having reduced shape elongation, the multi-quasiparticle states in $^{186,188}$Hf remain moderately robust against triaxial distortion, supporting the long expected occurrence of exceptionally long-lived isomers. The calculations are compared with available experimental data.
190 - O. Sorlin 2017
It is proposed here to investigate three major properties of the nuclear force that influence the amplitude of shell gaps, the nuclear binding energies as well as the nuclear $beta$-decay properties far from stability, that are all key ingredients for modeling the r-process nucleosynthesis. These properties are derived from experiments performed in different facilities worldwide, using several various state-of-the-art experimental techniques including transfer and knockout reactions. Expected consequences on the r process nucleosynthesis as well as on the stability of super heavy elements are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا