Do you want to publish a course? Click here

A 3d Gauge Theory/Quantum K-Theory Correspondence

138   0   0.0 ( 0 )
 Added by Hans Jockers
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The 2d gauged linear sigma model (GLSM) gives a UV model for quantum cohomology on a Kahler manifold X, which is reproduced in the IR limit. We propose and explore a 3d lift of this correspondence, where the UV model is the N=2 supersymmetric 3d gauge theory and the IR limit is given by Giventals permutation equivariant quantum K-theory on X. This gives a one-parameter deformation of the 2d GLSM/quantum cohomology correspondence and recovers it in a small radius limit. We study some novelties of the 3d case regarding integral BPS invariants, chiral rings, deformation spaces and mirror symmetry.



rate research

Read More

We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symmetry. By embedding four-dimensional Chern-Simons theory in a partial twist of the five-dimensional maximally supersymmetric Yang-Mills theory on a manifold with corners, we argue that this three-dimensional Toda theory is dual to a two-dimensional topological sigma model with A-branes on the moduli space of solutions to the Bogomolny equations. This furnishes a novel 3d-2d correspondence, which, among other mathematical implications, also reveals that modules of the 3d W-algebra are modules for the quantized algebra of certain holomorphic functions on the Bogomolny moduli space.
120 - Hans Jockers , Peter Mayr 2019
The disk partition function of certain 3d N=2 supersymmetric gauge theories computes a quantum K-theoretic ring for Kahler manifolds X. We study the 3d gauge theory/quantum K-theory correspondence for global and local Calabi-Yau manifolds with several Kahler moduli. We propose a multi-cover formula that relates the 3d BPS world-volume degeneracies computed by quantum K-theory to Gopakumar-Vafa invariants.
We study the algebra of Wilson line operators in three-dimensional N=2 supersymmetric U(M) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M,N), and its connection to K-theoretic Gromov-Witten invariants for Gr(M,N). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M,N), isomorphic to the Verlinde algebra for U(M), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.
We study a perturbation family of N=2 3d gauge theories and its relation to quantum K-theory. A 3d version of the Intriligator-Vafa formula is given for the quantum K-theory ring of Grassmannians. The 3d BPS half-index of the gauge theory is connected to the theory of bilateral hypergeometric q-series, and to modular q-characters of a class of conformal field theories in a certain massless limit. Turning on 3d Wilson lines at torsion points leads to mock modular behavior. Perturbed correlators in the IR regime are computed by determining the UV-IR map in the presence of deformations.
Quivers, gauge theories and singular geometries are of great interest in both mathematics and physics. In this note, we collect a few open questions which have arisen in various recent works at the intersection between gauge theories, representation theory, and algebraic geometry. The questions originate from the study of supersymmetric gauge theories in different dimensions with different supersymmetries. Although these constitute merely the tip of a vast iceberg, we hope this guide can give a hint of possible directions in future research. This is an invited contribution to a special volume of Proyecciones, E. Gasparim, Ed., and it is the hope that the questions are specific enough for research projects aimed at PhD students.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا