Do you want to publish a course? Click here

4d Chern-Simons Theory as a 3d Toda Theory, and a 3d-2d Correspondence

169   0   0.0 ( 0 )
 Added by Meer Ashwinkumar
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symmetry. By embedding four-dimensional Chern-Simons theory in a partial twist of the five-dimensional maximally supersymmetric Yang-Mills theory on a manifold with corners, we argue that this three-dimensional Toda theory is dual to a two-dimensional topological sigma model with A-branes on the moduli space of solutions to the Bogomolny equations. This furnishes a novel 3d-2d correspondence, which, among other mathematical implications, also reveals that modules of the 3d W-algebra are modules for the quantized algebra of certain holomorphic functions on the Bogomolny moduli space.



rate research

Read More

137 - Hans Jockers , Peter Mayr 2018
The 2d gauged linear sigma model (GLSM) gives a UV model for quantum cohomology on a Kahler manifold X, which is reproduced in the IR limit. We propose and explore a 3d lift of this correspondence, where the UV model is the N=2 supersymmetric 3d gauge theory and the IR limit is given by Giventals permutation equivariant quantum K-theory on X. This gives a one-parameter deformation of the 2d GLSM/quantum cohomology correspondence and recovers it in a small radius limit. We study some novelties of the 3d case regarding integral BPS invariants, chiral rings, deformation spaces and mirror symmetry.
We derive the Faddeev-Reshetikhin (FR) model from a four-dimensional Chern- Simons theory with two order surface defects by following the work by Costello and Yamazaki [arXiv:1908.02289]. Then we present a trigonometric deformation of the FR model by employing a boundary condition with an R-operator of Drinfeld-Jimbo type. This is a generalization of the work by Delduc, Lacroix, Magro and Vicedo [arXiv:1909.13824] from the disorder surface defect case to the order one.
270 - O.F. Dayi 2003
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is derived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter theta. A new noncommutative Chern-Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.
We discuss a set of heterotic and type II string theory compactifications to 1+1 dimensions that are characterized by factorized internal worldsheet CFTs of the form $V_1otimes bar V_2$, where $V_1, V_2$ are self-dual (super) vertex operator algebras. In the cases with spacetime supersymmetry, we show that the BPS states form a module for a Borcherds-Kac-Moody (BKM) (super)algebra, and we prove that for each model the BKM (super)algebra is a symmetry of genus zero BPS string amplitudes. We compute the supersymmetric indices of these models using both Hamiltonian and path integral formalisms. The path integrals are manifestly automorphic forms closely related to the Borcherds-Weyl-Kac denominator. Along the way, we comment on various subtleties inherent to these low-dimensional string compactifications.
Recently, a variety of deformed $T^{1,1}$ manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [arXiv:2010.05573]. We refer to the NLSMs with the integrable deformed $T^{1,1}$ as the ABL model for brevity. Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros. We specify boundary conditions in the CS theory that give rise to the ABL model and derive the sigma-model background with target-space metric and anti-symmetric two-form. Finally, we present two simple examples 1) an anisotropic $T^{1,1}$ model and 2) a $G/H$ $lambda$-model. The latter one can be seen as a one-parameter deformation of the Guadagnini-Martellini-Mintchev model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا