The disk partition function of certain 3d N=2 supersymmetric gauge theories computes a quantum K-theoretic ring for Kahler manifolds X. We study the 3d gauge theory/quantum K-theory correspondence for global and local Calabi-Yau manifolds with several Kahler moduli. We propose a multi-cover formula that relates the 3d BPS world-volume degeneracies computed by quantum K-theory to Gopakumar-Vafa invariants.
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of molten crystals is shown to be equal to the classical limit of the partition function of the topological string theory by relating the Ronkin function of the characteristic polynomial of the crystal melting model to the holomorphic 3-form on the corresponding Calabi-Yau manifold.
We derive global constraints on the non-BPS sector of supersymmetric 2d sigma-models whose target space is a Calabi-Yau manifold. When the total Hodge number of the Calabi-Yau threefold is sufficiently large, we show that there must be non-BPS primary states whose total conformal weights are less than 0.656. Moreover, the number of such primary states grows at least linearly in the total Hodge number. We discuss implications of these results for Calabi-Yau geometry.
In this paper, we classify non-freely acting discrete symmetries of complete intersection Calabi- Yau manifolds and their quotients by freely-acting symmetries. These non-freely acting symmetries can appear as symmetries of low-energy theories resulting from string compactifications on these Calabi-Yau manifolds, particularly in the context of the heterotic string. Hence, our results are relevant for four-dimensional model building with discrete symmetries and they give an indication which symmetries of this kind can be expected from string theory. For the 1695 known quotients of complete intersection manifolds by freely-acting discrete symmetries, non-freely-acting, generic symmetries arise in 381 cases and are, therefore, a relatively common feature of these manifolds. We find that 9 different discrete groups appear, ranging in group order from 2 to 18, and that both regular symmetries and R-symmetries are possible.
We present a list of Calabi-Yau threefolds known to us, and with holonomy groups that are precisely SU(3), rather than a subgroup, with small Hodge numbers, which we understand to be those manifolds with height $(h^{1,1}+h^{2,1})le 24$. With the completion of a project to compute the Hodge numbers of free quotients of complete intersection Calabi-Yau threefolds, most of which were computed in Refs. [1-3] and the remainder in Ref. [4], many new points have been added to the tip of the Hodge plot, updating the reviews by Davies and Candelas in Refs. [1, 5]. In view of this and other recent constructions of Calabi-Yau threefolds with small height, we have produced an updated list.
We develop methods to compute holomorphic Yukawa couplings for heterotic compactifications on complete intersection Calabi-Yau manifolds, generalising results of an earlier paper for Calabi-Yau hypersurfaces. Our methods are based on constructing the required bundle-valued forms explicitly and evaluating the relevant integrals over the projective ambient space. We also show how our approach relates to an earlier, algebraic one to calculate the holomorphic Yukawa couplings. A vanishing theorem, which we prove, implies that certain Yukawa couplings allowed by low-energy symmetries are zero due to topological reasons. To illustrate our methods, we calculate Yukawa couplings for SU(5)-based standard models on a co-dimension two complete intersection manifold.