Do you want to publish a course? Click here

Pseudoparticle approach to 1D integrable quantum models

310   0   0.0 ( 0 )
 Added by Pedro Sacramento
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over the last three decades a large number of experimental studies on several quasi one-dimensional (1D) metals and quasi1D Mott-Hubbard insulators have produced evidence for distinct spectral features identified with charge-only and spin-only fractionalized particles. They can be also observed in ultra-cold atomic 1D optical lattices a nd quantum wires. 1D exactly solvable models provide nontrivial tests of the approaches for these systems relying on field theories. Different schemes such as the pseudofermion dynamical theory (PDT) and the mobile quantum impurity model (MQIM) have revealed that the 1D correlated models high-energy physics is qualitatively different from that of a low-energy Tomonaga-Luttinger liquid (TLL). This includes the momentum dependence of the exponents that control the one- and two-particle dynamical correlation functions near their spectra edges and in the vicinity of one-particle singular spectral features. On the one hand, the low-energy charge-only and spin-only fractionalized particles are usually identified with holons and spinons, respectively. On the other hand, `particle-like representations in terms of {it pseudoparticles}, related PDT {it pseudofermions}, and MQIM particles are suitable for the description of both the low-energy TLL physics and high-energy spectral and dynamical properties of 1D correlated systems. The main goal of this review is to revisit the usefulness of pseudoparticle and PDT pseudofermion representations for the study of both static and high-energy spectral and dynamical properties of the 1D Lieb-Liniger Bose gas, spin-$1/2$ isotropic Heisenberg chain, and 1D Hubbard model. Moreover, the relation between the PDT and the MQIM is clarified.



rate research

Read More

Exact diagonalization (ED) of small model systems gives the thermodynamics of spin chains or quantum cell models at high temperature $T$. Density matrix renormalization group (DMRG) calculations of progressively larger systems are used to obtain excitations up to a cutoff $W_C$ and the low-$T$ thermodynamics. The hybrid approach is applied to the magnetic susceptibility $chi(T)$ and specific heat $C(T)$ of spin-$1/2$ chains with isotropic exchange such as the linear Heisenberg antiferromagnet (HAF) and the frustrated $J_1-J_2$ model with ferromagnetic (F) $J_1 < 0$ and antiferromagnetic (AF) $J_2 > 0$. The hybrid approach is fully validated by comparison with HAF results. It extends $J_1-J_2$ thermodynamics down to $T sim 0.01|J_1|$ for $J_2/|J_1| geq alpha_c = 1/4$ and is consistent with other methods. The criterion for the cutoff $W_C(N)$ in systems of $N$ spins is discussed. The cutoff leads to bounds for the thermodynamic limit that are best satisfied at a specific $T(N)$ at system size $N$.
The low temperature thermodynamics of correlated 1D fermionic models with spin and charge degrees of freedom is obtained by exact diagonalization (ED) of small systems and followed by density matrix renormalization group (DMRG) calculations that target the lowest hundreds of states ${E(N)}$ at system size $N$ instead of the ground state. Progressively larger $N$ reaches $T < 0.05t$ in correlated models with electron transfer $t$ between first neighbors and bandwidth $4t$. The size dependence of the many-fermion basis is explicitly included for arbitrary interactions by scaling the partition function. The remaining size dependence is then entirely due to the energy spectrum ${E(N)}$ of the model. The ED/DMRG method is applied to Hubbard and extended Hubbard models, both gapped and gapless, with $N_e = N$ or $N/2$ electrons and is validated against exact results for the magnetic susceptibility $chi(T)$ and entropy $S(T)$ per site. Some limitations of the method are noted. Special attention is given to the bond-order-wave phase of the extended Hubbard model with competing interactions and low $T$ thermodynamics sensitive to small gaps.
In this paper we find new integrable one-dimensional lattice models of electrons. We classify all such nearest-neighbour integrable models with su(2)xsu(2) symmetry following the procedure first introduced in arXiv:1904.12005. We find 12 R-matrices of difference form, some of which can be related to known models such as the XXX spin chain and the free Hubbard model, and some are new models. In addition, integrable generalizations of the Hubbard model are found by keeping the kinetic term of the Hamiltonian and adding all terms which preserve fermion number. We find that most of the new models can not be diagonalized using the standard nested Bethe Ansatz.
We present a unified framework for renormalization group methods, including Wilsons numerical renormalization group (NRG) and Whites density-matrix renormalization group (DMRG), within the language of matrix product states. This allows improvements over Wilsons NRG for quantum impurity models, as we illustrate for the one-channel Kondo model. Moreover, we use a variational method for evaluating Greens functions. The proposed method is more flexible in its description of spectral properties at finite frequencies, opening the way to time-dependent, out-of-equilibrium impurity problems. It also substantially improves computational efficiency for one-channel impurity problems, suggesting potentially emph{linear} scaling of complexity for $n$-channel problems.
131 - A. Rancon 2014
We present a Lattice Non-Perturbative Renormalization Group (NPRG) approach to quantum XY spin models by using a mapping onto hardcore bosons. The NPRG takes as initial condition of the renormalization group flow the (local) limit of decoupled sites, allowing us to take into account the hardcore constraint exactly. The initial condition of the flow is equivalent to the large $S$ classical results of the corresponding spin system. Furthermore, the hardcore constraint is conserved along the RG flow, and we can describe both local and long-distance fluctuations in a non-trivial way. We discuss a simple approximation scheme, and solve the corresponding flow equations. We compute both the zero-temperature thermodynamics and the finite temperature phase diagram on the square and cubic lattices. The NPRG allows us to recover the correct critical physics at finite temperature in two and three dimensions. The results compare well with numerical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا